Câu hỏi:

24/12/2025 38 Lưu

a) Giải phương trình \[{x^2} + x - 6 = 3(x - 2)\sqrt {x + 1} .\]

b) Giải hệ phương trình \[\left\{ \begin{array}{l}{x^2} - 2x - xy + y + 1 = 0\\{x^2} + 3x - \sqrt {{y^2} + 5x - 1}  - 2 = 0\end{array} \right.\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Điều kiện: \[x \ge - 1\]

Ta có \[{x^2} + x - 6 = 3(x - 2)\sqrt {x + 1} \Leftrightarrow (x - 2)(x + 3) - 3(x - 2)\sqrt {x + 1} = 0\]

 \[ \Leftrightarrow (x - 2)(x + 3 - 3\sqrt {x + 1} ) = 0 \Leftrightarrow x = 2\,\](thỏa mãn đk) hoặc \[x + 3 - 3\sqrt {x + 1} = 0\]

\[x + 3 - 3\sqrt {x + 1} = 0 \Leftrightarrow x + 3 = 3\sqrt {x + 1} \Leftrightarrow {x^2} - 3x = 0 \Leftrightarrow {x_1} = 0;{x_2} = 3\] (thỏa mãn đk)

Tập nghiệm của phương trình là \[S = \left\{ {0;2;3} \right\}\].

b) \[{x^2} - 2x - xy + y + 1 = 0 \Leftrightarrow (x - 1)(x - 1 - y) = 0 \Leftrightarrow x = 1\] hoặc \[y = x - 1\]

Với \[x = 1\] ta có phương trình \[\sqrt {{y^2} + 4} = 2 \Leftrightarrow y = 0\]

Với \[y = x - 1\] ta có phương trình \[{x^2} + 3x - \sqrt {{x^2} + 3x} - 2 = 0\]

Đặt \[t = \sqrt {{x^2} + 3x} ,\,{\rm{ }}t \ge 0,\]pt trở thành \[{t^2} - t - 2 = 0 \Leftrightarrow {t_1} = - 1\] (loại), \[t = 2\] (thỏa mãn)

Với \[t = 2\] ta được \[{x^2} + 3x - 4 = 0 \Leftrightarrow {x_1} = 1;{\rm{ }}{x_2} = - 4\].

Vậy hệ phương trình có hai nghiệm là \[\left( {1;0} \right);\left( { - 4; - 5} \right)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \[{x^2} - y = {a^2};\,{x^2} + y = {b^2}\] với \[a,\,b\] là các số tự nhiên \[ \Rightarrow 2y = {b^2} - {a^2}\]

Ta có \[{b^2} - {a^2}\] là số chẵn suy ra \[a,\,b\] là hai số cùng chẵn hoặc cùng lẻ\[ \Rightarrow (b - a)(b + a) \vdots 4\] \[ \Rightarrow y \vdots 2\].

b) \[{a^3} - 2{(a + b)^2} = {b^3} + 19 \Leftrightarrow (a - b - 2)({a^2} + ab + {b^2}) = 2ab + 19\]

\(2ab + 19 > 0,{\rm{ }}{a^2} + ab + {b^2} > 0 \Rightarrow a - b - 2 \ge 1\)\( \Rightarrow a - b \ge 3\)

Từ \[a - b - 2 \ge 1 \Rightarrow {a^2} + ab + {b^2} \le 2ab + 19\]\( \Rightarrow {\left( {a - b} \right)^2} < 19\)\( \Rightarrow a - b \le 4\)

Vì \(2ab + 19\) lẻ \( \Rightarrow a - b - 2\) lẻ \( \Rightarrow a - b\) lẻ \( \Rightarrow \) \(a - b = 3\)

Từ \(a - b = 3 \Rightarrow {b^2} + 3b - 10 = 0\)\( \Rightarrow b = - 5\) (loại) hoặc \(b = 2\). Vậy \(b = 2;a = 5\).

Lời giải

a) \(P = \left( {\frac{{5 + 4\sqrt x - 2(\sqrt x + 4) + 3(2\sqrt x - 3)}}{{(2\sqrt x - 3)(\sqrt x + 4)}}} \right):\left( {\frac{{x + 4\sqrt x + 5 - 6\sqrt x }}{{\sqrt x + 4}}} \right)\)

\(P = \left( {\frac{{8\sqrt x - 12}}{{(2\sqrt x - 3)(\sqrt x + 4)}}} \right):\left( {\frac{{x - 2\sqrt x + 5}}{{\sqrt x + 4}}} \right)\)

\(P = \frac{4}{{\sqrt x + 4}}.\frac{{\sqrt x + 4}}{{x - 2\sqrt x + 5}} = \frac{4}{{x - 2\sqrt x + 5}}\).

b) Ta có \(x - 2\sqrt x + 5 = {\left( {\sqrt x - 1} \right)^2} + 4 \Rightarrow x - 2\sqrt x + 5 \ge 4\) với \[\forall x \ge 0,\,x \ne \frac{9}{4}.\]

Khi đó \[P \le 1\] với \[\forall x \ge 0,\,x \ne \frac{9}{4}.\] Dấu “ = ” xảy ra khi \(x = 1\).

Giá trị lớn nhất của \[P\]là 1 khi \[x = 1\]