Trên bảng cho 2023 số nguyên phân biệt, mỗi số đều có dạng \[{a^2} + {b^2}\] trong đó \[a,\,{\rm{ }}b\] là các số nguyên. Mỗi lần ta thực hiện một phép biến đổi như sau: Xóa hai số tùy ý rồi viết thêm một số bằng tích của hai số vừa xóa. Hỏi sau một số lần biến đổi, trên bảng có số bằng \[{26.3^{2023}}\] hay không? Giải thích tại sao?
Trên bảng cho 2023 số nguyên phân biệt, mỗi số đều có dạng \[{a^2} + {b^2}\] trong đó \[a,\,{\rm{ }}b\] là các số nguyên. Mỗi lần ta thực hiện một phép biến đổi như sau: Xóa hai số tùy ý rồi viết thêm một số bằng tích của hai số vừa xóa. Hỏi sau một số lần biến đổi, trên bảng có số bằng \[{26.3^{2023}}\] hay không? Giải thích tại sao?
Quảng cáo
Trả lời:
|
Do đẳng thức \[\left( {{x^2} + {y^2}} \right)\left( {{z^2} + {t^2}} \right) = {\left( {xz + yt} \right)^2} + {\left( {xt - yz} \right)^2}\] nên sau mỗi lần biến đổi, các số trên bảng luôn có dạng \[{a^2} + {b^2}\] |
|
Do \[{a^2} \equiv 0,\,1,\,4\,{\rm{ }}(\bmod 8)\] nên \[{a^2} + {b^2} \equiv 0,\,1,\,2,\,4,\,5{\rm{ }}\,(\bmod 8)\] |
|
Vì \[{26.3^{2023}} \equiv {26.3.9^{1011}} \equiv 6{\rm{ }}\,(\bmod 8)\] nên số \[{26.3^{2023}}\] không có trên bảng. |
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \(\widehat {BKI} = \widehat {BAI}\) (nội tiếp (O) cùng chắn )
mà \(\widehat {BAI} = \widehat {IAC}\) \( \Rightarrow \widehat {MAQ} = \widehat {MKQ}\) \( \Rightarrow \) tứ giác AMQK nội tiếp
b) Tứ giác AMQK nội tiếp \( \Rightarrow \widehat {MQA} = \widehat {MKA}\), lại có \(\widehat {BKA} = \widehat {BCA}\)(nội tiếp (O) cùng chắn \(\widehat {AB}\)) \( \Rightarrow \) \(\widehat {MQA} = \widehat {BCA}\) \( \Rightarrow \) MQ // BC
H là trực tâm của \(\Delta \) ABC nên AH \( \bot \) BC \( \Rightarrow \) MQ \( \bot \) AH
\(\Delta \) AHQ có HD \( \bot \) AQ, MQ \( \bot \) AH nên M là trực tâm \( \Rightarrow \) AM \( \bot \) HQ
\(\Delta \) APQ có AM là phân giác, AM là đường cao nên \(\Delta \) APQ cân tại A.
c) Gọi N là giao điểm của AI và CE. \(\widehat {AIK} = \widehat {ABK}\) (nội tiếp (O) cùng chắn ), \(\widehat {ABD} = \widehat {ACE}\) (cùng phụ với \(\widehat {BAC}\)) \( \Rightarrow \) \(\widehat {NIQ} = \widehat {NCQ}\) \( \Rightarrow \) tứ giác NICQ nội tiếp \( \Rightarrow \)\(\widehat {QNC} = \widehat {QIC}\)
Có \(\widehat {BEC} = \widehat {BDC} = {90^0}\) nên tứ giác BEDC nội tiếp \( \Rightarrow \widehat {DEC} = \widehat {DBC}\), \(\widehat {KBC} = \widehat {KIC}\) (nội tiếp (O) cùng chắn ) \( \Rightarrow \widehat {QNC} = \widehat {DEC}\) \( \Rightarrow \) NQ // ED
Tứ giác NICQ nội tiếp nên \(\widehat {MNQ} = \widehat {QCI}\), tứ giác AMQK nội tiếp nên \(\widehat {QMN} = \widehat {AKQ}\) mà \(\widehat {AKI} = \widehat {ACI}\) (nội tiếp (O) cùng chắn ) \( \Rightarrow \) \(\widehat {QMN} = \widehat {QNM}\) \( \Rightarrow \) \(\Delta \) QMN cân \( \Rightarrow \) QM = QN.
MQ // BC \( \Rightarrow \) \(\frac{{MQ}}{{BC}} = \frac{{DQ}}{{DC}}\), NQ // ED \( \Rightarrow \) \(\frac{{NQ}}{{ED}} = \frac{{CQ}}{{CD}}\), lại có MQ = NQ nên \(\frac{{MQ}}{{BC}} + \frac{{MQ}}{{DE}} = \frac{{DQ}}{{DC}} + \frac{{CQ}}{{CD}} = 1\) \( \Rightarrow \) \(\frac{1}{{BC}} + \frac{1}{{DE}} = \frac{1}{{MQ}}\).
Lời giải
a) \(P = \left( {\frac{{5 + 4\sqrt x - 2(\sqrt x + 4) + 3(2\sqrt x - 3)}}{{(2\sqrt x - 3)(\sqrt x + 4)}}} \right):\left( {\frac{{x + 4\sqrt x + 5 - 6\sqrt x }}{{\sqrt x + 4}}} \right)\)
\(P = \left( {\frac{{8\sqrt x - 12}}{{(2\sqrt x - 3)(\sqrt x + 4)}}} \right):\left( {\frac{{x - 2\sqrt x + 5}}{{\sqrt x + 4}}} \right)\)
\(P = \frac{4}{{\sqrt x + 4}}.\frac{{\sqrt x + 4}}{{x - 2\sqrt x + 5}} = \frac{4}{{x - 2\sqrt x + 5}}\).
b) Ta có \(x - 2\sqrt x + 5 = {\left( {\sqrt x - 1} \right)^2} + 4 \Rightarrow x - 2\sqrt x + 5 \ge 4\) với \[\forall x \ge 0,\,x \ne \frac{9}{4}.\]
Khi đó \[P \le 1\] với \[\forall x \ge 0,\,x \ne \frac{9}{4}.\] Dấu “ = ” xảy ra khi \(x = 1\).
Giá trị lớn nhất của \[P\]là 1 khi \[x = 1\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.