Câu hỏi:

24/12/2025 48 Lưu

Công nghệ hỗ trợ trọng tài VAR (Video Assistant Referee) thiết lập một hệ tọa độ \(Oxyz\) để theo dõi vị trí của quả bóng M. Cho biết \[M\] đang nằm trên mặt sân có phương trình \(z = 0\), đồng thời thuộc mặt cầu \(\left( S \right):{\left( {x - 32} \right)^2} + {\left( {y - 50} \right)^2} + {\left( {z - 8} \right)^2} = 100\) (đơn vị độ dài tính theo mét). Tính khoảng cách từ vị trí \(M\) của quả bóng đến điểm \(J\) với \(J\) là hình chiếu vuông góc của tâm mặt cầu trên mặt sân.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

6

Trả lời: 6

Mặt cầu \(\left( S \right)\) có tâm là \(I\left( {32;50;8} \right)\)\(R = 10\).

\(J\) là hình chiếu của \(I\) trên mặt sân nên \(J\left( {32;50;0} \right)\).

Công nghệ hỗ trợ trọng tài VAR (V (ảnh 1)

Ta có tam giác \(IJM\) vuông tại \(J\).

\(IJ = \sqrt {{{\left( {32 - 32} \right)}^2} + {{\left( {50 - 50} \right)}^2} + {{\left( {0 - 8} \right)}^2}} = 8\).

Suy ra \(JM = \sqrt {{R^2} - I{J^2}} = \sqrt {{{10}^2} - {8^2}} = 6\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) \(F\left( 1 \right) - F\left( 0 \right) = - \frac{7}{2}\).
Đúng
Sai
b) Cho \(F\left( 0 \right) = 3\) thì khi đó \(F\left( 2 \right) = 5\).
Đúng
Sai
c) \(\int {f\left( x \right)} dx = \int {\left( {a{x^2} + bx + c} \right)dx} = \frac{a}{3}{x^3} + \frac{b}{2}{x^2} + cx\).
Đúng
Sai
d) \(a + b + 3c = - 12\).
Đúng
Sai

Lời giải

a) Đ, b) S, c) S, d) S

a) \(\int\limits_0^1 {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_0^1 = F\left( 1 \right) - F\left( 0 \right) = - \frac{7}{2}\).

b) \(\int\limits_0^2 {f\left( x \right)dx = \left. {F\left( x \right)} \right|_0^2 = F\left( 2 \right) - F\left( 0 \right) = - 2} \)\(F\left( 0 \right) = 3\) nên \(F\left( 2 \right) = 1\).

c) \(\int {f\left( x \right)} dx = \int {\left( {a{x^2} + bx + c} \right)dx} = \frac{a}{3}{x^3} + \frac{b}{2}{x^2} + cx + C\).

d) Vì \(\int\limits_0^1 {f\left( x \right)dx} = - \frac{7}{2}\) nên \(\frac{a}{3} + \frac{b}{2} + c = - \frac{7}{2}\) (1) và \(\int\limits_0^2 {f\left( x \right)dx = - 2} \) nên \(\frac{{8a}}{3} + 2b + 2c = - 2\) (2).

Từ (1) và (2), ta có a3+b2+c=728a3+2b+2c=2 2a+3b+6c=218a+6b+6c=6 2a+3b+6c=212a+b=5

\( \Rightarrow \left\{ \begin{array}{l}2a + 3\left( {5 - 2a} \right) + 6c = - 21\\b = 5 - 2a\end{array} \right.\)\[ \Rightarrow \left\{ \begin{array}{l} - 2a + 3c = - 18\\b = 5 - 2a\end{array} \right.\]\[ \Rightarrow \left\{ \begin{array}{l}c = \frac{{ - 18 + 2a}}{3}\\b = 5 - 2a\end{array} \right.\].

Do đó \(a + b + 3c = a + 5 - 2a - 18 + 2a = a - 13\).

Câu 2

a) Đường thẳng \(d\) có vectơ chỉ phương là \(\overrightarrow u = \left( {2;1; - 2} \right)\).
Đúng
Sai
b) Đường thẳng \(d\) đi qua điểm \(A\left( {5; - 3; - 31} \right)\).
Đúng
Sai
c) Mặt phẳng \(\left( P \right)\) chứa \(I\left( {2;3; - 1} \right)\) và vuông góc với đường thẳng \(d\) có phương trình là \(2x + y - 2z - 9 = 0\).
Đúng
Sai
d) Mặt cầu \(\left( S \right)\) có phương trình là \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 1} \right)^2} = 225\).
Đúng
Sai

Lời giải

a) Đ, b) S, c) Đ, d) S

a) Đường thẳng \(d\) có vectơ chỉ phương là \(\overrightarrow u = \left( {2;1; - 2} \right)\).

b) Thay tọa độ điểm \(A\left( {5; - 3; - 31} \right)\) vào phương trình đường thẳng \(d\) ta được \(\frac{{5 - 11}}{2} = \frac{{ - 3}}{1} = \frac{{ - 31 + 25}}{{ - 2}}\) (sai).

Do đó đường thẳng \(d\) không đi qua điểm \(A\left( {5; - 3; - 31} \right)\).

c) Mặt phẳng \(\left( P \right)\) chứa \(I\left( {2;3; - 1} \right)\) và vuông góc với đường thẳng \(d\) có một vectơ pháp tuyến \(\overrightarrow n = \overrightarrow u = \left( {2;1; - 2} \right)\) có phương trình là \(2\left( {x - 2} \right) + \left( {y - 3} \right) - 2\left( {z + 1} \right) = 0\) hay \(2x + y - 2z - 9 = 0\).

d)

a) Đ, b) S, c) S, d) S (ảnh 1)

Gọi \(H\) là hình chiếu của \(I\) lên \(AB\). Suy ra \(HA = HB = 8\).

Tọa độ điểm \(H\) là giao điểm của đường thẳng \(\left( d \right)\) và mặt phẳng \(\left( P \right)\).

Xét hệ \(\left\{ \begin{array}{l}x = 11 + 2t\\y = t\\z = - 25 - 2t\\2x + y - 2z - 9 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 11 + 2t\\y = t\\z = - 25 - 2t\\2\left( {11 + 2t} \right) + t - 2\left( { - 25 - 2t} \right) - 9 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 25\\y = 7\\z = - 39\\t = 7\end{array} \right.\).

Suy ra \(H\left( {25;7; - 39} \right)\).

Ta có \(IH = \sqrt {{{\left( {25 - 2} \right)}^2} + {{\left( {7 - 3} \right)}^2} + {{\left( { - 39 + 1} \right)}^2}} = 3\sqrt {221} \).

Do đó \(R = \sqrt {I{H^2} + H{B^2}} = \sqrt {1989 + 64} = \sqrt {2053} \).

Vậy \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 1} \right)^2} = 2053\).

Câu 5

a) Xác suất sản phẩm bị thất lạc là sản phẩm loại II là \(\frac{3}{{20}}\).
Đúng
Sai
b) Xác suất lấy được sản phẩm loại I nếu sản phẩm bị thất lạc là sản phẩm loại II là xấp xỉ \(13,4\% \).
Đúng
Sai
c) Xác suất lấy được sản phẩm loại I nếu sản phẩm bị thất lạc cũng là sản phẩm loại I là xấp xỉ \(2,4\% \).
Đúng
Sai
d) Xác suất lấy được sản phẩm loại I là \(15\% \).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(S = - \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^4 {f\left( x \right)dx} \).       
B. \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx} - \int\limits_1^4 {f\left( x \right)dx} \).    
C. \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^4 {f\left( x \right)dx} \).       
D. \(S = - \int\limits_{ - 1}^1 {f\left( x \right)dx} - \int\limits_1^4 {f\left( x \right)dx} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP