Câu hỏi:

24/12/2025 24 Lưu

Trong không gian \[Oxyz\] cho mặt cầu \[\left( S \right)\] có phương trình:\[{x^2} + {y^2} + {z^2} - 2x - 4y + 4z - 7 = 0\]. Xác định tọa độ tâm \[I\] và bán kính \[R\] của mặt cầu\[\left( S \right)\]:    

A. \[I\left( { - 1; - 2;2} \right)\];\[R = 3\].                                                               
B. \[I\left( {1;2; - 2} \right)\];\[R = \sqrt 2 \].    
C. \[I\left( { - 1; - 2;2} \right)\];\[R = 4\].                                                               
D. \[I\left( {1;2; - 2} \right)\];\[R = 4\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

\[\left( S \right):{x^2} + {y^2} + {z^2} - 2x - 4y + 4z - 7 = 0\]\( \Rightarrow a = 1\);\(\,b = 2\);\(\,c = - 2\);\(d = - 7\)

\( \Rightarrow R = \sqrt {{a^2} + {b^2} + {c^2} - d} \)\( = 4\); \[I\left( {1;2; - 2} \right)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt[3]{x}\), trục \(Ox\), đường thẳng \(x = 0\) và đường thẳng \(x = 1\) được tính bằng công thức \(S = \int\limits_0^1 {\left| {\sqrt[3]{x}} \right|dx} \).
Đúng
Sai
b) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3}\), trục \(Ox\), đường thẳng \(x = 0\) và đường thẳng \(x = 1\) có giá trị bằng \(\frac{3}{4}\) (đvdt).
Đúng
Sai
c) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3}\)\(y = \sqrt[3]{x}\), đường thẳng \(x = 0\) và đường thẳng \(x = 1\) được tính bằng công thức \(S = \int\limits_0^1 {\left( {{x^3} - \sqrt[3]{x}} \right)dx} \).
Đúng
Sai
d) Diện tích phần không được tô đậm trên viên gạch mem có giá trị bằng \(\frac{1}{2}\) (đvdt).
Đúng
Sai

Lời giải

a) Đ, b) S, c) S, d) Đ

a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt[3]{x}\), trục \(Ox\), đường thẳng \(x = 0\) và đường thẳng \(x = 1\) được tính bằng công thức \(S = \int\limits_0^1 {\left| {\sqrt[3]{x}} \right|dx} \).

b) Ta có \({S_1} = \int\limits_0^1 {\left| {{x^3}} \right|dx}  = \left. {\frac{{{x^4}}}{4}} \right|_0^1 = \frac{1}{4}\).

c) \({S_2} = \int\limits_0^1 {\left| {{x^3} - \sqrt[3]{x}} \right|dx} \)\( = \int\limits_0^1 {\left( {\sqrt[3]{x} - {x^3}} \right)dx} \).

d) Ta có \({S_2} = \int\limits_0^1 {\left( {\sqrt[3]{x} - {x^3}} \right)dx}  = \frac{1}{2}\)

Diện tích phần không tô đậm là \({S_3} = {S_{OABC}} - {S_2} = 1 - \frac{1}{2} = \frac{1}{2}\).

Lời giải

Trả lời: 9

Phương trình đường viên đạn đi là: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 + t\\z = 3 + 5t\end{array} \right.\).

Khi viên đạn trúng mục tiêu tại điểm \(B\left( {5;a;b} \right)\) nên \(1 + 2t = 5 \Leftrightarrow t = 2\).

Do đó tọa độ điểm B là \(B\left( {5;4;13} \right)\). Vậy \(b - a = 13 - 4 = 9\).

Câu 3

a) \(F'\left( 0 \right) = 0\).
Đúng
Sai
b) \(F\left( 1 \right) = e - 1\).
Đúng
Sai
c) \(\int {F\left( x \right)} dx = {e^x} - \frac{{{x^3}}}{3} + C\).
Đúng
Sai
d) \(\int {\frac{{f\left( x \right)}}{{x{e^x}}}dx = \ln \left| x \right|} - 2{e^x} + C\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\overrightarrow {{u_2}} = \left( { - 2;5;4} \right)\).                      

B. \(\overrightarrow {{u_3}} = \left( {2; - 5;4} \right)\).      
C. \(\overrightarrow {{u_4}} = \left( {2;5;4} \right)\).         
D. \(\overrightarrow {{u_1}} = \left( { - 2; - 5;4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Tọa độ của một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\)\(\left( {1;2; - 1} \right)\).
Đúng
Sai
b) Điểm \(A\) thuộc mặt phẳng \(\left( P \right)\).
Đúng
Sai
c) Phương trình mặt cầu tâm \(A\) và có bán kính bằng khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( P \right)\)\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 8\).
Đúng
Sai
d) Gọi \(\left( Q \right)\) là mặt phẳng đi qua điểm \(A\) và song song với mặt phẳng \(\left( P \right)\), mặt phẳng \(\left( Q \right)\) có phương trình là \(x + 2y - z - 1 = 0\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP