Câu hỏi:

24/12/2025 48 Lưu

Một nhà máy thực hiện khảo sát toàn bộ công nhân về sự hài lòng của họ về điều kiện làm việc tại phân xưởng, Kết quả khảo sát như sau

Một nhà máy thực hiện khảo sát toàn bộ công nhân về sự hài lòng của họ về điều kiện làm việc tại phân xưởng, Kết quả khảo sát như sau (ảnh 1)

Gặp ngẫu nhiên một công nhân của nhà máy. Gọi \(A\) là biến cố “Công nhân đó làm việc tại phân xưởng I” và B là biến cố “Công nhân đó hài lòng với điều kiện làm việc tại phân xưởng”.

a) Xác suất của biến cố \(A\)\(\frac{7}{{15}}\).
Đúng
Sai
b) Xác suất của biến cố \(B\)\(0,65\).
Đúng
Sai
c) Xác suất gặp được công nhân không hài lòng với điều kiện làm việc tại phân xưởng biết công nhân đó thuộc xưởng I là \(\frac{{12}}{{35}}\).
Đúng
Sai
d) Xác suất gặp được công nhân thuộc phân xưởng II biết công nhân đó hài lòng với điều kiện làm việc tại phân xưởng là 0,52.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ, b) S, c) Đ, d) S

a) Số công nhân làm ở phân xưởng I là \(23 + 12 = 35\).

Tổng số công nhân của hai phân xưởng là \(23 + 12 + 25 + 15 = 75\).

Suy ra \(P\left( A \right) = \frac{{35}}{{75}} = \frac{7}{{15}}\).

b) Số công nhân hài lòng với điều kiện làm việc của phân xưởng là: \(23 + 25 = 48\).

Suy ra \(P\left( B \right) = \frac{{48}}{{75}} = 0,64\).

c) \(P\left( {\overline B |A} \right) = \frac{{12}}{{35}}\).

d) \(P\left( {\overline A |B} \right) = \frac{{25}}{{40}} = 0,625\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt[3]{x}\), trục \(Ox\), đường thẳng \(x = 0\) và đường thẳng \(x = 1\) được tính bằng công thức \(S = \int\limits_0^1 {\left| {\sqrt[3]{x}} \right|dx} \).
Đúng
Sai
b) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3}\), trục \(Ox\), đường thẳng \(x = 0\) và đường thẳng \(x = 1\) có giá trị bằng \(\frac{3}{4}\) (đvdt).
Đúng
Sai
c) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3}\)\(y = \sqrt[3]{x}\), đường thẳng \(x = 0\) và đường thẳng \(x = 1\) được tính bằng công thức \(S = \int\limits_0^1 {\left( {{x^3} - \sqrt[3]{x}} \right)dx} \).
Đúng
Sai
d) Diện tích phần không được tô đậm trên viên gạch mem có giá trị bằng \(\frac{1}{2}\) (đvdt).
Đúng
Sai

Lời giải

a) Đ, b) S, c) S, d) Đ

a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt[3]{x}\), trục \(Ox\), đường thẳng \(x = 0\) và đường thẳng \(x = 1\) được tính bằng công thức \(S = \int\limits_0^1 {\left| {\sqrt[3]{x}} \right|dx} \).

b) Ta có \({S_1} = \int\limits_0^1 {\left| {{x^3}} \right|dx}  = \left. {\frac{{{x^4}}}{4}} \right|_0^1 = \frac{1}{4}\).

c) \({S_2} = \int\limits_0^1 {\left| {{x^3} - \sqrt[3]{x}} \right|dx} \)\( = \int\limits_0^1 {\left( {\sqrt[3]{x} - {x^3}} \right)dx} \).

d) Ta có \({S_2} = \int\limits_0^1 {\left( {\sqrt[3]{x} - {x^3}} \right)dx}  = \frac{1}{2}\)

Diện tích phần không tô đậm là \({S_3} = {S_{OABC}} - {S_2} = 1 - \frac{1}{2} = \frac{1}{2}\).

Lời giải

Trả lời: 9

Phương trình đường viên đạn đi là: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 + t\\z = 3 + 5t\end{array} \right.\).

Khi viên đạn trúng mục tiêu tại điểm \(B\left( {5;a;b} \right)\) nên \(1 + 2t = 5 \Leftrightarrow t = 2\).

Do đó tọa độ điểm B là \(B\left( {5;4;13} \right)\). Vậy \(b - a = 13 - 4 = 9\).

Câu 3

a) \(F'\left( 0 \right) = 0\).
Đúng
Sai
b) \(F\left( 1 \right) = e - 1\).
Đúng
Sai
c) \(\int {F\left( x \right)} dx = {e^x} - \frac{{{x^3}}}{3} + C\).
Đúng
Sai
d) \(\int {\frac{{f\left( x \right)}}{{x{e^x}}}dx = \ln \left| x \right|} - 2{e^x} + C\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\overrightarrow {{u_2}} = \left( { - 2;5;4} \right)\).                      

B. \(\overrightarrow {{u_3}} = \left( {2; - 5;4} \right)\).      
C. \(\overrightarrow {{u_4}} = \left( {2;5;4} \right)\).         
D. \(\overrightarrow {{u_1}} = \left( { - 2; - 5;4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Tọa độ của một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\)\(\left( {1;2; - 1} \right)\).
Đúng
Sai
b) Điểm \(A\) thuộc mặt phẳng \(\left( P \right)\).
Đúng
Sai
c) Phương trình mặt cầu tâm \(A\) và có bán kính bằng khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( P \right)\)\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 8\).
Đúng
Sai
d) Gọi \(\left( Q \right)\) là mặt phẳng đi qua điểm \(A\) và song song với mặt phẳng \(\left( P \right)\), mặt phẳng \(\left( Q \right)\) có phương trình là \(x + 2y - z - 1 = 0\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP