Một nhà máy thực hiện khảo sát toàn bộ công nhân về sự hài lòng của họ về điều kiện làm việc tại phân xưởng, Kết quả khảo sát như sau

Gặp ngẫu nhiên một công nhân của nhà máy. Gọi \(A\) là biến cố “Công nhân đó làm việc tại phân xưởng I” và B là biến cố “Công nhân đó hài lòng với điều kiện làm việc tại phân xưởng”.
Một nhà máy thực hiện khảo sát toàn bộ công nhân về sự hài lòng của họ về điều kiện làm việc tại phân xưởng, Kết quả khảo sát như sau

Gặp ngẫu nhiên một công nhân của nhà máy. Gọi \(A\) là biến cố “Công nhân đó làm việc tại phân xưởng I” và B là biến cố “Công nhân đó hài lòng với điều kiện làm việc tại phân xưởng”.
Quảng cáo
Trả lời:
a) Đ, b) S, c) Đ, d) S
a) Số công nhân làm ở phân xưởng I là \(23 + 12 = 35\).
Tổng số công nhân của hai phân xưởng là \(23 + 12 + 25 + 15 = 75\).
Suy ra \(P\left( A \right) = \frac{{35}}{{75}} = \frac{7}{{15}}\).
b) Số công nhân hài lòng với điều kiện làm việc của phân xưởng là: \(23 + 25 = 48\).
Suy ra \(P\left( B \right) = \frac{{48}}{{75}} = 0,64\).
c) \(P\left( {\overline B |A} \right) = \frac{{12}}{{35}}\).
d) \(P\left( {\overline A |B} \right) = \frac{{25}}{{40}} = 0,625\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) S, b) Đ, c) Đ, d) S
a) Có \(F'\left( x \right) = f\left( x \right)\). Suy ra \(F'\left( 0 \right) = f\left( 0 \right) = {e^0} - 2.0 = 1\).
b) Có \(F\left( x \right) = \int {\left( {{e^x} - 2x} \right)dx} = {e^x} - {x^2} + C\).
Mà \(F\left( 0 \right) = 1\) nên \(F\left( 0 \right) = {e^0} - 0 + C = 1 \Rightarrow C = 0\).
Do đó \(F\left( x \right) = {e^x} - {x^2}\). Suy ra \(F\left( 1 \right) = {e^1} - {1^2} = e - 1\).
c) \(\int {F\left( x \right)} dx = \int {\left( {{e^x} - {x^2}} \right)dx} = {e^x} - \frac{{{x^3}}}{3} + C\).
d) \[\int {\frac{{f\left( x \right)}}{{x{e^x}}}dx = } \int {\frac{{{e^x} - 2x}}{{x{e^x}}}dx = } \int {\left( {\frac{1}{x} - 2{e^{ - x}}} \right)dx} = \ln \left| x \right| + 2{e^{ - x}} + C\].
Lời giải
Trả lời: 6,5
\(F'\left( x \right) = {e^x}\left( {m\sin x + n\cos x} \right) + {e^x}\left( {m\cos x - n\sin x} \right)\)\( = {e^x}\left[ {\left( {m - n} \right)\sin x + \left( {n + m} \right)\cos x} \right]\).
Vì \(F'\left( x \right) = f\left( x \right)\) nên ta có \(\left\{ \begin{array}{l}m - n = 2\\m + n = - 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m = - \frac{1}{2}\\n = - \frac{5}{2}\end{array} \right.\).
Suy ra \(S = {m^2} + {n^2} = \frac{{13}}{2} = 6,5\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\overrightarrow {{u_2}} = \left( { - 2;5;4} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
