Câu hỏi:

24/12/2025 47 Lưu

Để trang trí cho một phòng trong một tòa nhà, người ta vẽ lên tường một hình như sau: trên mỗi cạnh của hình lục giác đều có cạnh bằng 2 dm có một cánh hoa hình parabol, đỉnh của parabol cách cạnh 3 dm và nằm phía ngoài hình lục giác, đường parabol đó đi qua hai đầu mút của mỗi cạnh (xem hình sau). Hãy tính diện tích của hình nói trên (kể cả hình lục giác đều) để mua sơn trang trí cho phù hợp. (kết quả làm tròn đến hàng phần mười)

Để trang trí cho một phòng trong một tòa nhà, người ta vẽ lên tường một hình như sau: trên mỗi cạnh của hình lục giác đều có cạnh bằng 2 dm có một cánh hoa hình parabol,  (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

34,4

Trả lời: 34,4

Xét một cánh hoa trong hệ trục \(Oxy\) như hình vẽ

Để trang trí cho một phòng trong một tòa nhà, người ta vẽ lên tường một hình như sau: trên mỗi cạnh của hình lục giác đều có cạnh bằng 2 dm có một cánh hoa hình parabol,  (ảnh 2)

Gọi \(\left( P \right):y = a{x^2} + bx + c\). Ta có \(\left( P \right)\) đi qua điểm \(A\left( {1;0} \right)\) và có đỉnh \(I\left( {0;3} \right)\).

Suy ra \(\left( P \right):y = - 3{x^2} + 3\).

Do đó diện tích mỗi cánh hoa là \(S = \int\limits_{ - 1}^1 {\left( { - 3{x^2} + 3} \right)dx} = 4\;{\rm{d}}{{\rm{m}}^{\rm{2}}}\).

Hơn nữa diện tích của lục giác đều cạnh 2 dm bằng 6 lần diện tích của tam giác đều cạnh 2 dm.

Vậy diện tích của hình trên là \({S_H} = 6\left( {\frac{{{2^2}\sqrt 3 }}{4} + 4} \right) = 6\sqrt 3 + 24 \approx 34,4\) dm2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt[3]{x}\), trục \(Ox\), đường thẳng \(x = 0\) và đường thẳng \(x = 1\) được tính bằng công thức \(S = \int\limits_0^1 {\left| {\sqrt[3]{x}} \right|dx} \).
Đúng
Sai
b) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3}\), trục \(Ox\), đường thẳng \(x = 0\) và đường thẳng \(x = 1\) có giá trị bằng \(\frac{3}{4}\) (đvdt).
Đúng
Sai
c) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3}\)\(y = \sqrt[3]{x}\), đường thẳng \(x = 0\) và đường thẳng \(x = 1\) được tính bằng công thức \(S = \int\limits_0^1 {\left( {{x^3} - \sqrt[3]{x}} \right)dx} \).
Đúng
Sai
d) Diện tích phần không được tô đậm trên viên gạch mem có giá trị bằng \(\frac{1}{2}\) (đvdt).
Đúng
Sai

Lời giải

a) Đ, b) S, c) S, d) Đ

a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt[3]{x}\), trục \(Ox\), đường thẳng \(x = 0\) và đường thẳng \(x = 1\) được tính bằng công thức \(S = \int\limits_0^1 {\left| {\sqrt[3]{x}} \right|dx} \).

b) Ta có \({S_1} = \int\limits_0^1 {\left| {{x^3}} \right|dx}  = \left. {\frac{{{x^4}}}{4}} \right|_0^1 = \frac{1}{4}\).

c) \({S_2} = \int\limits_0^1 {\left| {{x^3} - \sqrt[3]{x}} \right|dx} \)\( = \int\limits_0^1 {\left( {\sqrt[3]{x} - {x^3}} \right)dx} \).

d) Ta có \({S_2} = \int\limits_0^1 {\left( {\sqrt[3]{x} - {x^3}} \right)dx}  = \frac{1}{2}\)

Diện tích phần không tô đậm là \({S_3} = {S_{OABC}} - {S_2} = 1 - \frac{1}{2} = \frac{1}{2}\).

Lời giải

Trả lời: 9

Phương trình đường viên đạn đi là: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 + t\\z = 3 + 5t\end{array} \right.\).

Khi viên đạn trúng mục tiêu tại điểm \(B\left( {5;a;b} \right)\) nên \(1 + 2t = 5 \Leftrightarrow t = 2\).

Do đó tọa độ điểm B là \(B\left( {5;4;13} \right)\). Vậy \(b - a = 13 - 4 = 9\).

Câu 3

a) \(F'\left( 0 \right) = 0\).
Đúng
Sai
b) \(F\left( 1 \right) = e - 1\).
Đúng
Sai
c) \(\int {F\left( x \right)} dx = {e^x} - \frac{{{x^3}}}{3} + C\).
Đúng
Sai
d) \(\int {\frac{{f\left( x \right)}}{{x{e^x}}}dx = \ln \left| x \right|} - 2{e^x} + C\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\overrightarrow {{u_2}} = \left( { - 2;5;4} \right)\).                      

B. \(\overrightarrow {{u_3}} = \left( {2; - 5;4} \right)\).      
C. \(\overrightarrow {{u_4}} = \left( {2;5;4} \right)\).         
D. \(\overrightarrow {{u_1}} = \left( { - 2; - 5;4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Tọa độ của một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\)\(\left( {1;2; - 1} \right)\).
Đúng
Sai
b) Điểm \(A\) thuộc mặt phẳng \(\left( P \right)\).
Đúng
Sai
c) Phương trình mặt cầu tâm \(A\) và có bán kính bằng khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( P \right)\)\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 8\).
Đúng
Sai
d) Gọi \(\left( Q \right)\) là mặt phẳng đi qua điểm \(A\) và song song với mặt phẳng \(\left( P \right)\), mặt phẳng \(\left( Q \right)\) có phương trình là \(x + 2y - z - 1 = 0\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP