Biết góc quan sát ngang của một camera là \(116^\circ \). Trong không gian \(Oxyz\), camera được đặt tại điểm \(A\left( {2;1;5} \right)\) và chiếu thẳng về phía mặt phẳng \(\left( P \right):2x - y - 2z + 13 = 0\). Hỏi vùng quan sát được trên mặt phẳng \(\left( P \right)\) của camera là hình tròn có đường kính bằng bao nhiêu? (làm tròn kết quả đến chữ số phần mười).

Biết góc quan sát ngang của một camera là \(116^\circ \). Trong không gian \(Oxyz\), camera được đặt tại điểm \(A\left( {2;1;5} \right)\) và chiếu thẳng về phía mặt phẳng \(\left( P \right):2x - y - 2z + 13 = 0\). Hỏi vùng quan sát được trên mặt phẳng \(\left( P \right)\) của camera là hình tròn có đường kính bằng bao nhiêu? (làm tròn kết quả đến chữ số phần mười).

Quảng cáo
Trả lời:
Đáp án:
Trả lời: 6,4

Gọi \(BC\) là đường kính của hình tròn.
Gọi \(H\) là hình chiếu của \(H\) lên \(BC\).
Ta có \(AH = d\left( {A,\left( P \right)} \right) = \frac{{\left| {2.2 - 1 - 2.5 + 13} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = \frac{6}{3} = 2\).
Suy ra \(HC = AH.\tan 58^\circ = 2.\tan 58^\circ \approx 3,2\).
Do đó \(BC = 2HC = 6,4\).
Vùng quan sát được trên mặt phẳng \(\left( P \right)\) của camera là hình tròn có đường kính bằng 6,4.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 2026
Ta có \(I = \int\limits_0^1 {{e^{x + 1}}dx} \)\( = \int\limits_0^1 {{e^{x + 1}}d\left( {x + 1} \right)} = \left. {{e^{x + 1}}} \right|_0^1 = {e^2} - e\).
Suy ra \(a = 1;b = - 1\).
Do đó \(S = {\log _2}{2^{2026}} = 2026\).
Lời giải
Trả lời: 6,5
\(F'\left( x \right) = {e^x}\left( {m\sin x + n\cos x} \right) + {e^x}\left( {m\cos x - n\sin x} \right)\)\( = {e^x}\left[ {\left( {m - n} \right)\sin x + \left( {n + m} \right)\cos x} \right]\).
Vì \(F'\left( x \right) = f\left( x \right)\) nên ta có \(\left\{ \begin{array}{l}m - n = 2\\m + n = - 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m = - \frac{1}{2}\\n = - \frac{5}{2}\end{array} \right.\).
Suy ra \(S = {m^2} + {n^2} = \frac{{13}}{2} = 6,5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[I = - 11\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.