Có 20 sinh viên thi Xác suất-Thống kê, trong đó có 4 sinh viên giỏi ( trả lời đúng \(100{\rm{\% }}\) các câu hỏi), 5 sinh viên khá (trả lời \(80{\rm{\% }}\) các câu hỏi), 3 sinh viên trung bình (trả lời được \(50{\rm{\% }}\) câu hỏi). Gọi ngẫu nhiên 1 sinh viên vào thi và phát đề có 4 câu hỏi (được lấy ngẫu nhiên từ 20 câu). Sinh viên được gọi trả lời được cả 4 câu. Tìm kết quả gần nhất.
Có 20 sinh viên thi Xác suất-Thống kê, trong đó có 4 sinh viên giỏi ( trả lời đúng \(100{\rm{\% }}\) các câu hỏi), 5 sinh viên khá (trả lời \(80{\rm{\% }}\) các câu hỏi), 3 sinh viên trung bình (trả lời được \(50{\rm{\% }}\) câu hỏi). Gọi ngẫu nhiên 1 sinh viên vào thi và phát đề có 4 câu hỏi (được lấy ngẫu nhiên từ 20 câu). Sinh viên được gọi trả lời được cả 4 câu. Tìm kết quả gần nhất.
Tính xác suất để sinh viên đó là sinh viên khá?
Quảng cáo
Trả lời:
Đáp án đúng là A
Phương pháp giải
Sử dụng công thức xác suất toàn phần, công thức Bayes
Lời giải
Gọi \({A_1},{A_2},{A_3}\) lần lượt là các biến cố gọi một sinh viên Giỏi, Khá, Trung Bình
Nên \({A_1},{A_2},{A_3}\) là hệ biến cố đầy đủ.
Gọi \(B\): "sinh viên đó trả lời được 4 câu hỏi"
Ta có: \(P\left( {{A_1}} \right) = \frac{{C_4^1}}{{C_{20}^1}} = \frac{1}{5},P\left( {{A_2}} \right) = \frac{5}{{20}} = \frac{1}{4},P\left( {{A_3}} \right) = \frac{3}{{20}}\)
Theo bài ta có: 4 sinh viên giỏi trả lời được \(100{\rm{\% }}\) các câu hỏi \( \Rightarrow \) trả lời 20 câu hỏi
5 sinh viên khá trả lời \(80{\rm{\% }}\) câu hỏi \( \Rightarrow \) trả lời được \(20.80{\rm{\% }} = 16\) câu hỏi
3 sinh viên trung bình \(50{\rm{\% }}\) câu hỏi \( \Rightarrow \) Trả lời \(20.50{\rm{\% }} = 10\) câu hỏi
Từ đó \(P\left( {B\mid {A_1}} \right) = \frac{{C_{20}^4}}{{C_{20}^4}} = 1;P\left( {B\mid {A_2}} \right) = \frac{{C_{16}^4}}{{C_{20}^4}} = \frac{{364}}{{969}};P\left( {B\mid {A_3}} \right) = \frac{{C_{10}^4}}{{C_{20}^4}} = \frac{{14}}{{323}}\)
Áp dụng công thức tính xác suất toàn phần:
\(P\left( B \right) = P\left( {B\mid {A_1}} \right).P\left( {{A_1}} \right) + P\left( {B\mid {A_2}} \right).P\left( {{A_2}} \right) + P\left( {B\mid {A_3}} \right).P\left( {{A_3}} \right) = 1.\frac{1}{5} + \frac{{364}}{{969}}.\frac{1}{4} + \frac{3}{{20}}.\frac{{14}}{{323}} = \frac{{2911}}{{9690}}\)
Xác suất để sinh viên đó là sinh viên khá là: \(P\left( {{A_2}\mid B} \right)\)
Áp dụng công thức Bayes \(P\left( {{A_2}\mid B} \right) = \frac{{P\left( {B\mid {A_2}} \right).P\left( {{A_2}} \right)}}{{P\left( B \right)}} = \frac{{\frac{{364}}{{969}}.\frac{1}{4}}}{{\frac{{2911}}{{9690}}}} = \frac{{910}}{{2911}} \approx 0,31\)
Câu hỏi cùng đoạn
Câu 2:
Tính xác suất để sinh viên đó là sinh viên giỏi?
Đáp án đúng là C
Phương pháp giải
Sử dụng công thức xác suất Bayes
Lời giải
Xác suất để sinh viên đó là sinh viên giỏi là: \(P\left( {{A_1}\mid B} \right)\)
Áp dụng công thức Bayes ta có:
\(P\left( {{A_1}\mid B} \right) = \frac{{P\left( {B\mid {A_1}} \right).P\left( {{A_1}} \right)}}{{P\left( B \right)}} = \frac{{1.\frac{1}{5}}}{{\frac{{2911}}{{9690}}}} = \frac{{1938}}{{2911}} \approx 0,67\)
Câu 3:
Xác suất để sinh viên đó là sinh viên trung bình bằng:
Đáp án đúng là B
Phương pháp giải
Sử dụng công thức xác suất Bayes
Lời giải
Xác suất để sinh viên đó là sinh viên trung bình là: \(P\left( {{A_3}\mid B} \right)\)
Áp dụng công thức Bayes ta có:
\(P\left( {{A_3}\mid B} \right) = \frac{{P\left( {B\mid {A_3}} \right).P\left( {{A_3}} \right)}}{{P\left( B \right)}} = \frac{{\frac{{14}}{{323}}.\frac{3}{{20}}}}{{\frac{{2911}}{{9690}}}} = \frac{{20349}}{{675325}} \approx 0,03\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là A
Phương pháp giải
Thế điện cực chuẩn càng lớn thì tính oxi hóa của dạng oxi hóa càng mạnh và tính khử của dạng khử càng yếu.
Lời giải
Pin điện hóa hình thành bởi hai điện cực chì và đồng trong đó nên kim loại Pb đóng vai trò là cực âm, Cu đóng vai trò là cực dương.
(a) Đúng.
(b) Đúng.
(c) Đúng. Sức điện động chuẩn của pin được tính theo công thức:
\(E_{pin}^o = E_{{\rm{cathode }}}^o - E_{{\rm{anode }}}^o = - 0,126 - ( - 0,762) = 0,636\;{\rm{V}}\)
(d) Đúng.
Vậy có 4 đáp án đúng.
Chọn đáp án A.
Câu 2
Lời giải
Đáp án đúng là C
Phương pháp giải
Xem lại lý thuyết hệ miễn dịch
Lời giải
Đáp ứng miễn dịch đặc hiệu (hay miễn dịch thu được) là phản ứng chậm hơn ban đầu, nhưng hiệu quả và chính xác hơn vì nó được thiết kế để nhắm vào các mầm bệnh cụ thể. Khi hệ miễn dịch đặc hiệu nhận diện được mầm bệnh, nó sản xuất kháng thể và tế bào tiêu diệt chuyên biệt, và có khả năng ghi nhớ mầm bệnh đó để chống lại nhanh hơn trong tương lai (như trường hợp của vắc-xin).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

