PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Một vật chuyển động với gia tốc \(a\left( t \right) = \frac{1}{{{t^2} + 3t + 2}}\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\), trong đó \(t\) là khoảng thời gian tính từ thời điểm ban đầu. Vận tốc chuyển động của vật là \(v\left( t \right)\), vận tốc ban đầu của vật là \({v_0} = 3\ln 2\left( {{\rm{m/s}}} \right).\)
PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Một vật chuyển động với gia tốc \(a\left( t \right) = \frac{1}{{{t^2} + 3t + 2}}\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\), trong đó \(t\) là khoảng thời gian tính từ thời điểm ban đầu. Vận tốc chuyển động của vật là \(v\left( t \right)\), vận tốc ban đầu của vật là \({v_0} = 3\ln 2\left( {{\rm{m/s}}} \right).\)
Quảng cáo
Trả lời:
a) Đ, b) Đ, c) S, d) Đ
a) Vận tốc của vật tại thời điểm \(t\) giây là \(v\left( t \right) = \int {a\left( t \right)dt} \).
b) \(v\left( t \right) = \int {\frac{1}{{{t^2} + 3t + 2}}dt} \)\( = \int {\frac{1}{{\left( {t + 1} \right)\left( {t + 2} \right)}}dt} \)\( = \int {\left( {\frac{1}{{t + 1}} - \frac{1}{{t + 2}}} \right)dt} \)\( = \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| + C\).
Mà \({v_0} = 3\ln 2\left( {{\rm{m/s}}} \right)\) nên \(\ln \frac{1}{2} + C = 3\ln 2 \Rightarrow C = 4\ln 2\).
Do đó \(v\left( t \right) = \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| + 4\ln 2\).
c) Có \(v\left( {10} \right) = \ln \frac{{11}}{{12}} + 4\ln 2 \approx 2,69\;{\rm{m/s}}\).
d) \(v\left( t \right) = \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| + 4\ln 2 = 4\ln 2\)\( \Rightarrow \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| = 0\)\( \Rightarrow \left| {\frac{{t + 1}}{{t + 2}}} \right| = 1\)\( \Rightarrow \left[ \begin{array}{l}\frac{{t + 1}}{{t + 2}} = 1\\\frac{{t + 1}}{{t + 2}} = - 1\end{array} \right.\) vô nghiệm.
Do đó không có thời điểm nào vận tốc của vật đạt \(v = 4\ln 2\;\left( {{\rm{m/s}}} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 7,53
Ta có \(F\left( x \right) = \int {f\left( x \right)dx} = \int {\left( {3{{\cos }^2}\frac{x}{2} + \sin x} \right)} dx\)\( = \int {\left( {3\frac{{1 + \cos x}}{2} + \sin x} \right)} dx\)
\[ = \int {\left( {\frac{3}{2} + \frac{{3\cos x}}{2} + \sin x} \right)} dx\]\[ = \frac{3}{2}x + \frac{3}{2}\sin x - \cos x + C\].
Vì \(F\left( 0 \right) = 5\) nên \[F\left( 0 \right) = - 1 + C = 5 \Rightarrow C = 6\].
Do đó \[F\left( x \right) = \frac{3}{2}x + \frac{3}{2}\sin x - \cos x + 6\].
Vậy \[F\left( {\frac{\pi }{4}} \right) = \frac{3}{2}.\frac{\pi }{4} + \frac{3}{2}\sin \frac{\pi }{4} - \cos \frac{\pi }{4} + 6 \approx 7,53\].
Lời giải
Trả lời: 27
Ta có \(\overrightarrow {AB} = \left( {2;0; - 1} \right)\), \(\overrightarrow {AC} = \left( {2;9; - 1} \right)\), \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {9;0;18} \right) = 9\left( {1;0;2} \right)\).
Mặt phẳng \((ABC)\) và \((Oxy)\) có vectơ pháp tuyến lần lượt là:\({\vec n_1} = (1;0;2)\),\({\vec n_2} = (0;0;1)\).
Gọi \(\alpha \) là góc giữa mặt phẳng mái nhà bên phải và nền nhà.
Ta có \(\cos \alpha = \left| {\cos \left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right)} \right| = \frac{2}{{\sqrt 5 }}\). Suy ra \(\alpha \approx 27^\circ \).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
