Câu hỏi:

24/12/2025 38 Lưu

Cho hình chóp đều. Mệnh đề nào dưới đây sai?

A. Tất cả các cạnh của hình chóp bằng nhau.
B. Đáy của hình chóp là đa giác đều.
C. Chân đường cao của hình chóp trùng với tâm của đa giác đáy.
D. Các mặt bên của hình chóp là những tam giác cân bằng nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Hình chóp đều có các cạnh bên bằng nhau và các cạnh đáy bằng nhau, do đó cạnh bên và cạnh đáy có thể không bằng nhau, vậy đáp án A sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{{\sqrt 2 }}{2}\).                       
B. \( - \frac{{\sqrt 2 }}{2}\).      
C. \(\sqrt 2 \).          
D. \( - \sqrt 2 \).

Lời giải

Đáp án đúng là: B

\({\log _2}x = \sqrt 2 \) nên \(x > 0\).

Khi đó ta có \(A = {\log _2}{x^2} + {\log _{\frac{1}{2}}}{x^3} + {\log _4}x\)\( = 2{\log _2}x + 3{\log _{{2^{ - 1}}}}x + {\log _{{2^2}}}x\)

                        \( = 2{\log _2}x - 3{\log _2}x + \frac{1}{2}{\log _2}x = - \frac{1}{2}{\log _2}x = - \frac{{\sqrt 2 }}{2}\).

Lời giải

Cho hình chóp \(S.ABCD\) có (ảnh 1)

Gọi \(O\) là tâm của hình chữ nhật \(ABCD\).

Ta có \(AC \cap \left( {SBD} \right) = O\) nên \(\frac{{d\left( {C,\left( {SBD} \right)} \right)}}{{d\left( {A,\left( {SBD} \right)} \right)}} = \frac{{CO}}{{AO}} = 1\) (vì \(O\) là trung điểm \(AC\)).

Suy ra \(d\left( {C,\left( {SBD} \right)} \right) = d\left( {A,\left( {SBD} \right)} \right)\).

Gọi \(H\), \(I\) lần lượt là hình chiếu của \(A\) lên \(BD\), \(SH\), ta có

\(\left\{ \begin{array}{l}AI \bot SH\\AI \bot BD\,\,\,\,\left( {{\rm{do }}BD \bot AH,\,BD \bot SA \Rightarrow BD \bot \left( {SAH} \right) \Rightarrow BD \bot AI} \right)\end{array} \right.\)

Suy ra \(AI \bot \left( {SBD} \right)\)            (vì \(SH \cap BD = H\)\(SH,BD \subset \left( {SBD} \right)\)).

Do đó, \(d\left( {A,\left( {SBD} \right)} \right) = AI\).

Xét tam giác \(ABD\) vuông tại \(A\) với \(AH\) là đường cao, ta có

\(AH = \frac{{AB \cdot AD}}{{\sqrt {A{B^2} + A{D^2}} }} = \frac{{a \cdot a\sqrt 3 }}{{\sqrt {3{a^2} + {a^2}} }} = \frac{{a\sqrt 3 }}{2}\).

Xét tam giác \(SAH\) vuông tại \(A\) với \(AI\) là đường cao, ta có

\(AI = \frac{{AH \cdot AS}}{{\sqrt {A{H^2} + A{S^2}} }} = \frac{{\frac{{a\sqrt 3 }}{2} \cdot a\sqrt 3 }}{{\sqrt {\frac{{3{a^2}}}{4} + 3{a^2}} }} = \frac{{a\sqrt {15} }}{5}\).

Vậy khoảng cách từ điểm \(C\) đến mặt phẳng \(\left( {SBD} \right)\) bằng \(\frac{{a\sqrt {15} }}{5}\).

Câu 3

A. 8.                         
B. \(4\).                    
C. \(2\). 
D. 16.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({a^5}{b^4}\).   
B. \({a^4}{b^5}\).   
C. \(5a + 4b\).                                 
D. \(4a + 5b\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[AC\].                
B. \[AM\] (với \[M\] là hình chiếu của \(A\) trên \(BC\)).                    
C. \[AB\].                
D. \[AH\] (với \[H\] là hình chiếu của \(A\) trên \(SB\)).          

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( {{\rm{IV}}} \right)\).             
B. \(\left( {{\rm{III}}} \right)\).     
C. \(\left( {\rm{I}} \right)\).                          
D. \(\left( {{\rm{II}}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP