Câu hỏi:

24/12/2025 5 Lưu

Cho hình chóp \(S.ABC\)\(SA \bot \left( {ABC} \right)\)\(H\) là hình chiếu vuông góc của \(S\) lên \(BC\). Hãy chọn khẳng định đúng.        

A. \(BC \bot AB\).  
B. \(BC \bot AC\).  
C. \(BC \bot SC\).                                
D. \(BC \bot AH\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Đáp án đúng là: B   Vì \(SA \bot \left( {ABCD} \right)\) nên hình chiếu vuông góc của \(SD\) trên mặt phẳng \(\left( {ABCD} \right)\) là \(AD\). (ảnh 1)

Ta có: \(\left\{ \begin{array}{l}BC \bot SH\\BC \bot SA\,\,\left( {{\rm{do}}\,\,SA \bot \left( {ABC} \right)} \right)\end{array} \right. \Rightarrow BC \bot AH\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \({\left( {\frac{1}{2}} \right)^x} \ge 2 \cdot {4^{2x}} \Leftrightarrow {\left( {{2^{ - 1}}} \right)^x} \ge 2 \cdot {\left( {{2^2}} \right)^{2x}} \Leftrightarrow {2^{ - x}} \ge {2^{1 + 4x}} \Leftrightarrow - x \ge 1 + 4x\) (do 2 > 1)

                                         \( \Leftrightarrow 5x \le - 1 \Leftrightarrow x \le - \frac{1}{5}\).

Vậy tập nghiệm của bất phương trình là \(S = \left[ { - \frac{1}{5};\, + \infty } \right)\).

b) \(\log _2^2x - 5{\log _2}x - 6 \le 0\,\,\,\,\left( 1 \right)\)

ĐK: \(x > 0\,\,\left( * \right)\).

Đặt \(t = {\log _2}x\,\,\left( 2 \right)\).

\(\left( 1 \right)\) thành \({t^2} - 5t - 6 \le 0 \Leftrightarrow - 1 \le t \le 6\mathop \Leftrightarrow \limits^{\left( 2 \right)} - 1 \le {\log _2}x \le 6 \Leftrightarrow \frac{1}{2} \le x \le 64\)

So với \(\left( * \right)\): \(\left( 1 \right) \Leftrightarrow \frac{1}{2} \le x \le 64\)

Vậy tập nghiệm của bất phương trình là \(S = \left[ {\frac{1}{2};64} \right]\).

Lời giải

Đáp án đúng là: D (ảnh 1)

a) Ta có: \(SA \bot \left( {ABCD} \right)\), mà \(BC \subset \left( {ABCD} \right)\)\( \Rightarrow BC \bot SA\).

Và \(BC \bot AB\) (do \(ABCD\) là hình vuông).

Mà \(SA,AB \subset \left( {SAB} \right)\). Vậy \(BC \bot \left( {SAB} \right)\).

b) Ta có: \(SA \bot \left( {ABCD} \right)\), mà \(BD \subset \left( {ABCD} \right)\)\( \Rightarrow SA \bot BD\).

Và \(BD \bot AC\) (do \(ABCD\) là hình vuông).

Mà \(SA,AC \subset \left( {SAC} \right)\).

Suy ra \(BD \bot \left( {SAC} \right)\).

Mặt khác ta có: \(BD \subset \left( {SBD} \right)\).

Vậy \(\left( {SAC} \right) \bot \left( {SBD} \right)\).

Câu 4

A. \(x = {3^2}\).      
B. \(x = {2^3}\).      
C. \(x = \frac{8}{2}\).                   
D. \(x = {\log _2}8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[{a^r} = {a^{m - n}} = \sqrt[n]{{{a^m}}}\].       
B. \[{a^r} = {a^{n - m}} = \sqrt[m]{{{a^n}}}\].               
C. \[{a^r} = {a^{\frac{n}{m}}} = \sqrt[m]{{{a^n}}}\].                                       
D. \[{a^r} = {a^{\frac{m}{n}}} = \sqrt[n]{{{a^m}}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({a^8}\).            
B. \({a^2}\).           
C. \({a^{\frac{7}{2}}}\).      
D. \({a^{\frac{9}{2}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(m < n.\)            
B. \(m = n.\)            
C. \(m > n.\)  
D. \(m = - n\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP