Câu hỏi:

24/12/2025 4 Lưu

Trong các mệnh đề sau, mệnh đề nào sai?

A. Hình lăng trụ đứng là hình lăng trụ có các cạnh bên vuông góc với mặt đáy.
B. Hình lăng trụ đứng có các mặt bên là hình chữ nhật và vuông góc với mặt đáy.
C. Hình lăng trụ đứng có các mặt là hình chữ nhật gọi là hình lập phương.
D. Hình lăng trụ đứng có đáy là một đa giác đều được gọi là hình lăng trụ đều.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Hình lăng trụ đứng có các mặt là hình chữ nhật gọi là hình hộp chữ nhật.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \({\left( {\frac{1}{2}} \right)^x} \ge 2 \cdot {4^{2x}} \Leftrightarrow {\left( {{2^{ - 1}}} \right)^x} \ge 2 \cdot {\left( {{2^2}} \right)^{2x}} \Leftrightarrow {2^{ - x}} \ge {2^{1 + 4x}} \Leftrightarrow - x \ge 1 + 4x\) (do 2 > 1)

                                         \( \Leftrightarrow 5x \le - 1 \Leftrightarrow x \le - \frac{1}{5}\).

Vậy tập nghiệm của bất phương trình là \(S = \left[ { - \frac{1}{5};\, + \infty } \right)\).

b) \(\log _2^2x - 5{\log _2}x - 6 \le 0\,\,\,\,\left( 1 \right)\)

ĐK: \(x > 0\,\,\left( * \right)\).

Đặt \(t = {\log _2}x\,\,\left( 2 \right)\).

\(\left( 1 \right)\) thành \({t^2} - 5t - 6 \le 0 \Leftrightarrow - 1 \le t \le 6\mathop \Leftrightarrow \limits^{\left( 2 \right)} - 1 \le {\log _2}x \le 6 \Leftrightarrow \frac{1}{2} \le x \le 64\)

So với \(\left( * \right)\): \(\left( 1 \right) \Leftrightarrow \frac{1}{2} \le x \le 64\)

Vậy tập nghiệm của bất phương trình là \(S = \left[ {\frac{1}{2};64} \right]\).

Lời giải

Đáp án đúng là: D (ảnh 1)

a) Ta có: \(SA \bot \left( {ABCD} \right)\), mà \(BC \subset \left( {ABCD} \right)\)\( \Rightarrow BC \bot SA\).

Và \(BC \bot AB\) (do \(ABCD\) là hình vuông).

Mà \(SA,AB \subset \left( {SAB} \right)\). Vậy \(BC \bot \left( {SAB} \right)\).

b) Ta có: \(SA \bot \left( {ABCD} \right)\), mà \(BD \subset \left( {ABCD} \right)\)\( \Rightarrow SA \bot BD\).

Và \(BD \bot AC\) (do \(ABCD\) là hình vuông).

Mà \(SA,AC \subset \left( {SAC} \right)\).

Suy ra \(BD \bot \left( {SAC} \right)\).

Mặt khác ta có: \(BD \subset \left( {SBD} \right)\).

Vậy \(\left( {SAC} \right) \bot \left( {SBD} \right)\).

Câu 4

A. \(x = {3^2}\).      
B. \(x = {2^3}\).      
C. \(x = \frac{8}{2}\).                   
D. \(x = {\log _2}8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[{a^r} = {a^{m - n}} = \sqrt[n]{{{a^m}}}\].       
B. \[{a^r} = {a^{n - m}} = \sqrt[m]{{{a^n}}}\].               
C. \[{a^r} = {a^{\frac{n}{m}}} = \sqrt[m]{{{a^n}}}\].                                       
D. \[{a^r} = {a^{\frac{m}{n}}} = \sqrt[n]{{{a^m}}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({a^8}\).            
B. \({a^2}\).           
C. \({a^{\frac{7}{2}}}\).      
D. \({a^{\frac{9}{2}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(m < n.\)            
B. \(m = n.\)            
C. \(m > n.\)  
D. \(m = - n\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP