Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật tâm \(I\), cạnh bên \(SA\) vuông góc với đáy, \(H,K\) lần lượt là hình chiếu của \(A\) lên \(SC,SD\). Kí hiệu \(d\left( {A,\left( {SCD} \right)} \right)\) là khoảng cách giữa điểm \(A\) và mặt phẳng \(\left( {SCD} \right)\). Khẳng định nào sau đây đúng?
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 11 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: A

Ta có: \(AK \bot SD\,\,\left( 1 \right)\)
\(\left. \begin{array}{l}SA \bot CD\\AD \bot CD\end{array} \right\} \Rightarrow CD \bot \left( {SAD} \right) \Rightarrow CD \bot AK\left( 2 \right)\).
Từ (1) và (2) \(AK \bot \left( {SCD} \right)\). Hay \(AK = d\left( {A,\left( {SCD} \right)} \right)\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
![Cho hình chóp \[S.ABCD\] có đáy là hình thang, \[AB = 2a\], \[AD = DC (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/13-1766591754.png)
Ta có \[M\] là trung điểm của \[AB\].
Theo giả thiết suy ra \[ABCD\] là nửa lục giác đều nội tiếp đường tròn đường kính \[AB\]
\[ \Rightarrow \left\{ \begin{array}{l}\widehat {ACB} = 90^\circ ;\widehat {ABC} = 60^\circ \\AC = a\sqrt 3 \end{array} \right.\]
Vì \[DM{\rm{//}}BC \Rightarrow DM{\rm{//}}\left( {SBC} \right)\]
Nên \[d\left( {DM,SB} \right) = d\left( {DM,\left( {SBC} \right)} \right) = d\left( {M,\left( {SBC} \right)} \right) = \frac{1}{2}d\left( {A,\left( {SBC} \right)} \right)\] (vì \[MB = \frac{1}{2}AB\]).
Kẻ \[AH \bot SC\].
Ta lại có \[\left\{ \begin{array}{l}BC \bot AC\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAC} \right)\]\[ \Rightarrow AH \bot BC\].
Khi đó \[\left\{ \begin{array}{l}AH \bot SC\\AH \bot BC\end{array} \right. \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow d\left( {A,\left( {SBC} \right)} \right) = AH\].
Xét tam giác \[SAC\] vuông tại \[A\], ta có
\[A{H^2} = \frac{{A{C^2} \cdot S{A^2}}}{{A{C^2} + S{A^2}}} = \frac{{{{\left( {a\sqrt 3 } \right)}^2} \cdot {{\left( {3a} \right)}^2}}}{{{{\left( {a\sqrt 3 } \right)}^2} + {{\left( {3a} \right)}^2}}} = \frac{{9{a^2}}}{4}\]\[ \Rightarrow AH = \frac{3}{2}a\].
Vậy \[d\left( {DM,SB} \right) = \frac{1}{2}d\left( {A,\left( {SBC} \right)} \right) = \frac{1}{2}AH = \frac{{3a}}{4}\].
Câu 2
Lời giải
Đáp án đúng là: A
Ta có \[C = \frac{{{a^{\frac{3}{4}}}\left( {{a^{\frac{3}{2}}} - {a^{\frac{4}{3}}}} \right)}}{{{a^{\frac{1}{4}}}\left( {a - {a^{\frac{5}{6}}}} \right)}} = \frac{{{a^{\frac{3}{4}}} \cdot {a^{\frac{4}{3}}}\left( {{a^{\frac{1}{6}}} - 1} \right)}}{{{a^{\frac{1}{4}}} \cdot {a^{\frac{5}{6}}}\left( {{a^{\frac{1}{6}}} - 1} \right)}} = \frac{{{a^{\frac{4}{3} + \frac{3}{4}}}}}{{{a^{\frac{1}{4} + \frac{5}{6}}}}} = \frac{{{a^{\frac{{25}}{{12}}}}}}{{{a^{\frac{{13}}{{12}}}}}} = {a^{\frac{{25}}{{12}} - \frac{{13}}{{12}}}} = a\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.