Câu hỏi:

25/12/2025 48 Lưu

Cho hình chóp \[S.ABC\] có đáy \[ABC\] là tam giác cân tại \[C\], \(AC = BC = a\sqrt {10} \), mặt bên \(SAB\) là tam giác đều cạnh \(2a\) và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng \[SC\] và mặt phẳng \[\left( {ABC} \right)\] bằng        

A. \(30^\circ \).       
B. \(45^\circ \).       
C. \(90^\circ \).     
D. \(60^\circ \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Đáp án đúng là: A Góc \(BHD\) là một góc phẳng của góc nhị diện \[\left[ {B,\,AC',\,D} \right]\]. (ảnh 1)

Gọi \(H\) là trung điểm của \(AB\).

Vì tam giác \(SAB\) là tam giác đều nên \(SH \bot AB\).

Lại có \(\left( {SAB} \right) \bot \left( {ABC} \right)\)\(\left( {SAB} \right) \cap \left( {ABC} \right) = AB\). Do đó, \(SH \bot \left( {ABC} \right)\).

Khi đó góc giữa đường thẳng \[SC\] và mặt phẳng \[\left( {ABC} \right)\] bằng \(\widehat {SCH}\).

Vì tam giác \(SAB\) là tam giác đều cạnh \(2a\) nên \(SH = \frac{{2a\sqrt 3 }}{2} = a\sqrt 3 \).

Vì tam giác \[ABC\] là tam giác cân tại \[C\] nên \(CH \bot AB\).

Ta có \(AH = \frac{{AB}}{2} = \frac{{2a}}{2} = a\).

Áp dụng định lí Pythagore trong tam giác vuông \(ACH\) ta được:

\(CH = \sqrt {A{C^2} - A{H^2}} = \sqrt {{{\left( {a\sqrt {10} } \right)}^2} - {a^2}} = 3a\).

Lại có \(SH \bot CH\) (do \(SH \bot \left( {ABC} \right)\)) nên tam giác \(SHC\) vuông tại \(H\), do đó ta có:

\(\tan \widehat {SCH} = \frac{{SH}}{{HC}} = \frac{{a\sqrt 3 }}{{3a}} = \frac{{\sqrt 3 }}{3}\). Suy ra \(\widehat {SCH} = 30^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(4\).                    
B. \(\frac{1}{4}\).   
C. \( - \frac{1}{4}\).                   
D. \( - 4\).

Lời giải

Đáp án đúng là: B

Ta có \({\log _a}\sqrt[4]{a} = {\log _a}{a^{\frac{1}{4}}} = \frac{1}{4}\).

Lời giải

Số lượng vi khuẩn ban đầu \({N_0} = 500\) con.

Sau thời gian \(t = 2\) giờ có 1 500 con nên ta có \(1\,\,500 = 500 \cdot {e^{2r}}\)

\( \Leftrightarrow {e^{2r}} = 3 \Leftrightarrow 2r = \ln 3 \Leftrightarrow r = \frac{{\ln 3}}{2}\).

Do đó, tỉ lệ tăng trưởng mỗi giờ của loài vi khuẩn này là \(r = \frac{{\ln 3}}{2}\).

Gọi \(t\) là thời gian để số lượng vi khuẩn ban đầu tăng gấp đôi, tức là \(N\left( t \right) = 2{N_0}\).

Lại có \(N\left( t \right) = {N_0} \cdot {e^{rt}}\) nên ta có \(2{N_0} = {N_0} \cdot {e^{rt}} \Leftrightarrow {e^{rt}} = 2 \Rightarrow rt = \ln 2 \Rightarrow t \approx 1,26\) (giờ).

Câu 3

A. \(1 + {\log _4}a\).                               
B. \(1 - {\log _4}a\).                              
C. \({\log _4}a\).     
D. \(4{\log _4}a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( { - \infty ;\, - 2} \right] \cup \left[ {2;\, + \infty } \right)\).                        
B. \(\left( { - 2;\,2} \right)\).                                  
C. \[\left( { - \infty ;\, - 2} \right) \cup \left( {2;\, + \infty } \right)\].                        
D. \[\left[ { - 2;\,2} \right]\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(A'D\).               
B. \(AC\).                
C. \(BB'\).                            
D. \(AD'\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Hàm số nghịch biến trên \[\mathbb{R}\].              
B. Hàm số đồng biến trên \[\mathbb{R}\].                      
C. Hàm số nghịch biến trên \(\left( {0; + \infty } \right).\)                          
D. Hàm số đồng biến trên \(\left( {0; + \infty } \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left[ {B,\,AC',\,D} \right]\].           
B. \[\left[ {B,\,AC',\,C} \right]\].   
C. \[\left[ {D,\,AC',\,C} \right]\].                          
D. \[\left[ {B',\,AC',\,D} \right]\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP