Câu hỏi:

26/12/2025 4 Lưu

Phương trình tổng quát của đường thẳng \(d\) đi qua điểm \(C\left( {1;3} \right)\) và có một vectơ pháp tuyến \(\overrightarrow n  = \left( {3;3} \right)\) là

A. \(3x + 3y + 3 = 0\);                                     

B. \(3x + 3y + 12 = 0\);

C. \(x + y + 3 = 0\);                                          
D. \(x + y - 4 = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Phương trình tổng quát của đường thẳng \(d\) đi qua điểm \(C\left( {1;3} \right)\)và có một vectơ pháp tuyến \(\overrightarrow n  = \left( {3;3} \right)\) là

\(3\left( {x - 1} \right) + 3\left( {y - 3} \right) = 0 \Leftrightarrow 3x + 3y - 12 = 0 \Leftrightarrow x + y - 4 = 0\).

Vậy phương trình tổng quát của đường thẳng \(d\) đi qua điểm \(C\left( {1;3} \right)\) và có vectơ pháp tuyến \(\overrightarrow n  = \left( {3;3} \right)\) là \(x + y - 4 = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì \(5 = 5 + 0 = 4 + 1 = 3 + 2 = 2 + 2 + 1 = 3 + 1 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1\) nên ta có các trường hợp sau:

+) Trường hợp 1: Số tự nhiên có một chữ số 5 đứng đầu và 2017 chữ số 0 đứng sau: Có 1 số.

+) Trường hợp 2: Số tự nhiên có một chữ số 4, một chữ số 1 và 2016 chữ số 0.

- Khả năng 1: Nếu chữ số 4 đứng đầu thì chữ số 1 đứng ở một trong 2017 vị trí còn lại nên ta có \(C_{2017}^1\) số.

- Khả năng 2: Nếu chữ số 1 đứng đầu thì chữ số 4 đứng ở một trong 2017 vị trí còn lại nên ta có \(C_{2017}^1\) số.

+) Trường hợp 3: Số tự nhiên có một chữ số 3, một chữ số 2 và 2016 chữ số 0.

- Khả năng 1: Nếu chữ số 3 đứng đầu thì chữ số 2 đứng ở một trong 2017 vị trí còn lại nên ta có \(C_{2017}^1\) số.

- Khả năng 2: Nếu chữ số 2 đứng đầu thì chữ số 3 đứng ở một trong 2017 vị trí còn lại nên ta có \(C_{2017}^1\) số.

+) Trường hợp 4: Số tự nhiên có hai chữ số 2, một chữ số 1 và 2015 chữ số 0.

- Khả năng 1: Nếu chữ số 2 đứng đầu thì chữ số 1 và chữ số 2 còn lại đứng ở hai trong 2017 vị trí còn lại nên ta có \(A_{2017}^2\) số.

- Khả năng 2: Nếu chữ số 1 đứng đầu thì hai chữ số 2 đứng ở hai trong \(2017\) vị trí còn lại nên ta có \(C_{2017}^2\) số.

+) Trường hợp 5: Số tự nhiên có 2 chữ số \(1\), một chữ số 3 và 2015 chữ số 0 thì tương tự như trường hợp 4 ta có \(A_{2017}^2 + C_{2017}^2\) số.

+) Trường hợp 6: Số tự nhiên có một chữ số 2, ba chữ số 1 và 2014 chữ số 0.

- Khả năng 1: Nếu chữ số 2 đứng đầu thì ba chữ số 1 đứng ở ba trong 2017 vị trí còn lại nên ta có \(C_{2017}^3\)số.

- Khả năng 2: Nếu chữ số 1 đứng đầu và chữ số 2 đứng ở vị trí mà không có chữ số 1 nào khác đứng trước nó thì hai chữ số 1 còn lại đứng ở trong 2016 vị trí còn lại nên ta có \(C_{2016}^2\) số.

- Khả năng 3: Nếu chữ số 1 đứng đầu và chữ số 2 đứng ở vị trí mà đứng trước nó có hai chữ số 1 thì hai chữ số 1 và 2 còn lại đứng ở trong 2016 vị trí còn lại nên ta có \(A_{2016}^2\) số.

+) Trường hợp 7: Số tự nhiên có năm chữ số 1 và \(2013\) chữ số 0, vì chữ số 1 đứng đầu nên bốn chữ số 1 còn lại đứng ở bốn trong 2017 vị trí còn lại nên ta có \(C_{2017}^4\) số.

Áp dụng quy tắc cộng ta có \(1 + 4C_{2017}^1 + 2\left( {C_{2017}^2 + A_{2017}^2} \right) + \left( {C_{2017}^3 + A_{2016}^2 + C_{2016}^2} \right) + C_{2017}^4\) số cần tìm.

Câu 2

A. \(\frac{4}{5}\);      
B. \(\frac{3}{5}\);          
C. 0;                           
D. 1.

Lời giải

Đáp án đúng là: B

Đường thẳng \(\Delta :3x - my + 5 = 0\) có vectơ pháp tuyến là: \(\overrightarrow {{n_\Delta }}  = \left( {3; - m} \right)\).

Đường thẳng \(\Delta ':x + 5y = 0\) có vectơ pháp tuyến là: \(\overrightarrow {{n_{\Delta '}}}  = \left( {1;5} \right)\).

Để \(\Delta  \bot \Delta '\) thì \({n_\Delta } \bot {n_{\Delta '}} \Leftrightarrow 3 \cdot 1 + \left( { - m} \right) \cdot 5 = 0 \Leftrightarrow 3 - 5m = 0 \Leftrightarrow m = \frac{3}{5}\).

Câu 5

A. \(a = 2,b = 1\);                                           

B. \(a = 1,b =  - 2\);   

C. \(a =  - 1,b = 2\);                                          
D. \(a =  - 2,b = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Một kết quả của sự sắp xếp thứ tự \(n\) phần tử của tập hợp \(A\);            

B. Tất cả các kết quả của việc lấy \(k\) phần tử từ \(n\) phần tử của tập hợp \(A\) và sắp xếp chúng theo một thứ tự nào đó;           

C. Một kết quả của việc lấy \(k\) phần tử từ \(n\) phần tử của tập hợp \(A\) và sắp xếp chúng theo một thứ tự nào đó;            

D. Một số được tính bằng \(n\left( {n - 1} \right)...\left( {n - k + 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 5;                          
B. \(A_5^1\);                 
C. 10;                         
D. 5!.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP