Câu hỏi:

29/12/2025 209 Lưu

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu thí sinh chỉ chọn một phương án

Cho hình chóp \(S.ABC\), gọi \(G\) là trọng tâm tam giác \(ABC\). Khẳng định nào sau đây là đúng?

A. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \).                                   
B. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 2\overrightarrow {SG} \).                          
C. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = \overrightarrow {SG} \).                                
D. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 4\overrightarrow {SG} \)                     

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Theo tính chất trọng tâm của tam giác thì \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  = 3\overrightarrow {SG} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 34.

Gọi các biến cố \(A:\) “Học sinh giỏi Toán”; \(B:\) “Học sinh giỏi Văn”;

\(C:\) “\[2\] học sinh được chọn có đúng \[1\] học sinh giỏi cả Toán và Ngữ văn”.

Đặt \[x = n(AB)(x \in {\mathbb{N}^*})\] là số học sinh giỏi cả hai môn.

Số học sinh giỏi của lớp là \({n_G} = n(A) + n(B) - n(AB) = 18 + 12 - x = 30 - x.\)

\(\begin{array}{l}P(C) = \frac{{x.(30 - 2x)}}{{C_{30 - x}^2}} = \frac{{2x(30 - 2x)}}{{(30 - x)(29 - x)}}\\P(C) = \frac{9}{{23}} \Leftrightarrow 101{x^2} - 1911x + 7830 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 6 &  \in \mathbb{N}\\x = \frac{{1305}}{{101}} \notin \mathbb{N}\end{array} \right. \Rightarrow x = 6.\end{array}\)

Vậy số học sinh của lớp 11 này bằng \(30 - 6 + 10 = 34\) học sinh.

Lời giải

Lời giải

Đáp án: \[0,65\].

Vậy \[d\left( {B,\left( {S (ảnh 1)

Kẻ \[AH \bot CD\] tại \[H\], \[AK \bot SH\] tại \[K\]

Vì \[AH \bot CD\] và \[AS \bot CD\] nên \[CD \bot \left( {SAH} \right)\]\[ \Rightarrow AK \bot CD\] mà \[AK \bot SH\] nên \[AK \bot \left( {SCD} \right)\]

Vậy \[d\left( {A,\left( {SCD} \right)} \right) = AK\].\[\widehat {ADH} = \widehat {BAD} = 60^\circ \] (so le trong).

\[AH = AD.\sin 60^\circ  = \frac{{\sqrt 3 }}{2},AK = \frac{{SA.AH}}{{\sqrt {S{A^2} + A{H^2}} }} = \frac{{\sqrt {21} }}{7} \approx 0,65\].

Vậy \[d\left( {B,\left( {SCD} \right)} \right) \approx 0,65.\] (vì \[AB//\left( {SCD} \right)\]).

Câu 5

a) \(\overrightarrow {AB} = \left( { - 1;1; - 2} \right).\)
Đúng
Sai
b) Điểm \(G\left( {a;b;c} \right)\) là trọng tâm của tam giác \(\Delta ABC\) thì \(a + b + c = 2\).
Đúng
Sai
c) Điểm \(I\left( {x;y;z} \right)\)thỏa mãn \(2\overrightarrow {IA} + \overrightarrow {IB} + 3\overrightarrow {IC} = \vec 0,\) khi đó \(2x + y + z = 4.\)
Đúng
Sai
d) Gọi \(M\left( {x;y;z} \right)\) là điểm trên mặt phẳng tọa độ \(\left( {Oyz} \right)\)sao cho biểu thức \[P = - 2M{A^2} - M{B^2} - 3M{C^2}\] đạt giá trị lớn nhất. Khi đó \(x + y - z < - 5\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Tập xác định của hàm số đã cho \(D = \mathbb{R}\).
Đúng
Sai
b) \(f'(x) = {3^x}\left( {\ln x + \frac{1}{x}} \right)\)
Đúng
Sai
c) Hàm số đã cho đồng biến trên \((3; + \infty )\).
Đúng
Sai
d) Có \(18\) số nguyên \(x\) sao cho ứng với mỗi số nguyên \(x\) có đúng 3 số nguyên \(y\) thỏa mãn bất phương trình: \({3^{{y^2} - \frac{{|x|}}{x}}} \le {\log _{{y^2} + 3}}\left( {\frac{{|x|}}{3} + 3} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP