Câu hỏi:

29/12/2025 262 Lưu

Tung một đồng xu cân đối và đồng chất 1 lần. Xác suất để xuất hiện mặt sấp là?

A. \(0,25\).                                   
B. \(1\).                                  
C. \(0\).                             
D. \(0,5\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Ta có \(\left| \emptyset  \right| = 2 \Rightarrow P = \frac{1}{2} = 0,5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 34.

Gọi các biến cố \(A:\) “Học sinh giỏi Toán”; \(B:\) “Học sinh giỏi Văn”;

\(C:\) “\[2\] học sinh được chọn có đúng \[1\] học sinh giỏi cả Toán và Ngữ văn”.

Đặt \[x = n(AB)(x \in {\mathbb{N}^*})\] là số học sinh giỏi cả hai môn.

Số học sinh giỏi của lớp là \({n_G} = n(A) + n(B) - n(AB) = 18 + 12 - x = 30 - x.\)

\(\begin{array}{l}P(C) = \frac{{x.(30 - 2x)}}{{C_{30 - x}^2}} = \frac{{2x(30 - 2x)}}{{(30 - x)(29 - x)}}\\P(C) = \frac{9}{{23}} \Leftrightarrow 101{x^2} - 1911x + 7830 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 6 &  \in \mathbb{N}\\x = \frac{{1305}}{{101}} \notin \mathbb{N}\end{array} \right. \Rightarrow x = 6.\end{array}\)

Vậy số học sinh của lớp 11 này bằng \(30 - 6 + 10 = 34\) học sinh.

Lời giải

Đáp án: \[1,5\].

Một mặt bằng đường đua được mô hình hoá bởi một hình bao gồm hai cạnh của một hình chữ nhật và hai nửa đường tròn bằng nhau. Một khán giả đang ngồi xem đua tại vị trí điểm \[P\](với các thông số được cho như hình vẽ). (ảnh 2)

Gọi \[O\] là tâm đường tròn \[(R = 1)\]; \[K\] là điểm giữa đường tròn và đường thẳng; \[H\] là hình chiếu của \[P\] lên \[OK\]. Có \[PH = 2\;km\]; \[OH = OK + KH = 1 + 0,5 = 1,5\;km\]; \[OP = \sqrt {{2^2} + 1,{5^2}}  = 2,5\;km\].

Dễ thấy vị trí \[Q\] để cho \[PQ\] ngắn nhất là \[P,Q,O\] thẳng hàng.

Khi đó \[\min PQ = OP - R = 2,5 - 1 = 1,5\;km\].

Câu 6

a) \(\overrightarrow {AB} = \left( { - 1;1; - 2} \right).\)
Đúng
Sai
b) Điểm \(G\left( {a;b;c} \right)\) là trọng tâm của tam giác \(\Delta ABC\) thì \(a + b + c = 2\).
Đúng
Sai
c) Điểm \(I\left( {x;y;z} \right)\)thỏa mãn \(2\overrightarrow {IA} + \overrightarrow {IB} + 3\overrightarrow {IC} = \vec 0,\) khi đó \(2x + y + z = 4.\)
Đúng
Sai
d) Gọi \(M\left( {x;y;z} \right)\) là điểm trên mặt phẳng tọa độ \(\left( {Oyz} \right)\)sao cho biểu thức \[P = - 2M{A^2} - M{B^2} - 3M{C^2}\] đạt giá trị lớn nhất. Khi đó \(x + y - z < - 5\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Tập xác định của hàm số đã cho \(D = \mathbb{R}\).
Đúng
Sai
b) \(f'(x) = {3^x}\left( {\ln x + \frac{1}{x}} \right)\)
Đúng
Sai
c) Hàm số đã cho đồng biến trên \((3; + \infty )\).
Đúng
Sai
d) Có \(18\) số nguyên \(x\) sao cho ứng với mỗi số nguyên \(x\) có đúng 3 số nguyên \(y\) thỏa mãn bất phương trình: \({3^{{y^2} - \frac{{|x|}}{x}}} \le {\log _{{y^2} + 3}}\left( {\frac{{|x|}}{3} + 3} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP