Câu hỏi:

29/12/2025 101 Lưu

Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm \(I\) và \(II\). Mỗi sản phẩm \(I\) bán lãi \(500\) nghìn đồng, mỗi sản phẩm \(II\) bán lãi \(400\) nghìn đồng. Để sản xuất được một sản phẩm \(I\) thì Chiến phải làm việc trong \(3\) giờ, Bình phải làm việc trong \(1\) giờ. Để sản xuất được một sản phẩm \(II\) thì Chiến phải làm việc trong \(2\) giờ, Bình phải làm việc trong \(6\) giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá \(180\) giờ và Bình không thể làm việc quá \(220\) giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là bao nhiêu triệu đồng?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

32

Đáp án: \(32\)

Gọi \(x\) là số sản phẩm \(I\) được sản xuất (\(x \ge 0\), \(x \in \mathbb{N}\)).

Gọi \(y\) là số sản phẩm \(II\) được sản xuất (\(y \ge 0\), \(y \in \mathbb{N}\)).

Tổng tiền lãi (tính bằng nghìn đồng) là: \(F\left( {x,y} \right) = 500x + 400y\)

Ta cần tìm giá trị lớn nhất của \(F\left( {x,y} \right) = 500x + 400y\).

Thời gian làm việc của Chiến: \(3x + 2y \le 180\quad \left( {\rm{1}} \right)\)

Thời gian làm việc của Bình: \(x + 6y \le 220\quad \left( {\rm{2}} \right)\)

Ta thiết lập được hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{3x + 2y \le 180}\\{x + 6y \le 220}\\{x \ge 0,y \ge 0}\end{array}} \right.\)

Miền nghiệm của hệ bất ph (ảnh 1)

Miền nghiệm của hệ bất phương trình là tứ giác \(OABC\) với \(O\left( {0;0} \right)\); \(A\left( {60;0} \right)\); \(B\left( {40;30} \right)\);\(C\left( {0;\frac{{110}}{3}} \right)\)

Ta có: \(F\left( {0;0} \right) = 0;\,\,F\left( {60;0} \right) = 30\,000;\,F\left( {40;30} \right) = 32\,000;\,\,F\left( {0;\frac{{110}}{3}} \right) = \frac{{44\,000}}{3} \approx 14\,666,67\)

Giá trị lớn nhất của \(F\) là \(32000\) nghìn đồng hay 32 triệu đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 34.

Gọi các biến cố \(A:\) “Học sinh giỏi Toán”; \(B:\) “Học sinh giỏi Văn”;

\(C:\) “\[2\] học sinh được chọn có đúng \[1\] học sinh giỏi cả Toán và Ngữ văn”.

Đặt \[x = n(AB)(x \in {\mathbb{N}^*})\] là số học sinh giỏi cả hai môn.

Số học sinh giỏi của lớp là \({n_G} = n(A) + n(B) - n(AB) = 18 + 12 - x = 30 - x.\)

\(\begin{array}{l}P(C) = \frac{{x.(30 - 2x)}}{{C_{30 - x}^2}} = \frac{{2x(30 - 2x)}}{{(30 - x)(29 - x)}}\\P(C) = \frac{9}{{23}} \Leftrightarrow 101{x^2} - 1911x + 7830 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 6 &  \in \mathbb{N}\\x = \frac{{1305}}{{101}} \notin \mathbb{N}\end{array} \right. \Rightarrow x = 6.\end{array}\)

Vậy số học sinh của lớp 11 này bằng \(30 - 6 + 10 = 34\) học sinh.

Lời giải

Lời giải

Đáp án: \[0,65\].

Vậy \[d\left( {B,\left( {S (ảnh 1)

Kẻ \[AH \bot CD\] tại \[H\], \[AK \bot SH\] tại \[K\]

Vì \[AH \bot CD\] và \[AS \bot CD\] nên \[CD \bot \left( {SAH} \right)\]\[ \Rightarrow AK \bot CD\] mà \[AK \bot SH\] nên \[AK \bot \left( {SCD} \right)\]

Vậy \[d\left( {A,\left( {SCD} \right)} \right) = AK\].\[\widehat {ADH} = \widehat {BAD} = 60^\circ \] (so le trong).

\[AH = AD.\sin 60^\circ  = \frac{{\sqrt 3 }}{2},AK = \frac{{SA.AH}}{{\sqrt {S{A^2} + A{H^2}} }} = \frac{{\sqrt {21} }}{7} \approx 0,65\].

Vậy \[d\left( {B,\left( {SCD} \right)} \right) \approx 0,65.\] (vì \[AB//\left( {SCD} \right)\]).

Câu 5

a) \(\overrightarrow {AB} = \left( { - 1;1; - 2} \right).\)
Đúng
Sai
b) Điểm \(G\left( {a;b;c} \right)\) là trọng tâm của tam giác \(\Delta ABC\) thì \(a + b + c = 2\).
Đúng
Sai
c) Điểm \(I\left( {x;y;z} \right)\)thỏa mãn \(2\overrightarrow {IA} + \overrightarrow {IB} + 3\overrightarrow {IC} = \vec 0,\) khi đó \(2x + y + z = 4.\)
Đúng
Sai
d) Gọi \(M\left( {x;y;z} \right)\) là điểm trên mặt phẳng tọa độ \(\left( {Oyz} \right)\)sao cho biểu thức \[P = - 2M{A^2} - M{B^2} - 3M{C^2}\] đạt giá trị lớn nhất. Khi đó \(x + y - z < - 5\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Tập xác định của hàm số đã cho \(D = \mathbb{R}\).
Đúng
Sai
b) \(f'(x) = {3^x}\left( {\ln x + \frac{1}{x}} \right)\)
Đúng
Sai
c) Hàm số đã cho đồng biến trên \((3; + \infty )\).
Đúng
Sai
d) Có \(18\) số nguyên \(x\) sao cho ứng với mỗi số nguyên \(x\) có đúng 3 số nguyên \(y\) thỏa mãn bất phương trình: \({3^{{y^2} - \frac{{|x|}}{x}}} \le {\log _{{y^2} + 3}}\left( {\frac{{|x|}}{3} + 3} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP