Câu hỏi:

29/12/2025 45 Lưu

Để chặn đường hành lang hình chữ L, người ta dùng một que sào thẳng dài đặt kín những điểm chạm với hành lang (như hình vẽ). Biết \[a = 24\]\[b = 3\]. Hỏi cái sào thỏa mãn điều kiện trên có chiều dài tối thiểu là bao nhiêu? (kết quả làm tròn đến hàng phần chục).

Để chặn đường hành lang hình chữ (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

33,5

Đáp án: 33,5

Để chặn đường hành lang hình chữ (ảnh 2)

Đặt các điểm như hình vẽ.

Đặt \(DF = x\), \(x > 0\), ta có \(\Delta ADF\) đồng dạng với \(\Delta BED\) nên \(\frac{{EB}}{{ED}} = \frac{{AF}}{{DF}}\)\( \Rightarrow EB = \frac{{ab}}{x}\)

Gọi \[l\] là chiều dài của que sào, ta có \({l^2} = A{B^2} = {\left( {x + b} \right)^2} + {\left( {a + \frac{{ab}}{x}} \right)^2} = f\left( x \right)\).

Đạo hàm:

\(f'\left( x \right) = 2\left( {x + b} \right) - 2\frac{{ab}}{{{x^2}}}\left( {a + \frac{{ab}}{x}} \right) = 2\left( {x + b} \right)\left( {1 - \frac{{{a^2}b}}{{{x^3}}}} \right)\); \(f'\left( x \right) = 0 \Leftrightarrow x = \sqrt[3]{{{a^2}b}} = 12\).

Dễ dàng suy ra được \(\min \,f\left( x \right) = f\left( {12} \right) = 1125\)

Vậy giá trị nhỏ nhất của que sào là \(l = \sqrt {1125}  = 15\sqrt 5  \approx 33,5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số : 30

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình t (ảnh 1)

Gọi \(M,I\)lần lượt là trung điểm \(CD,\,SC\).

Theo giả thiết ta có tam giác \(ACD\) đều. Suy ra \(AM = \frac{{AD\sqrt 3 }}{2} = \frac{{\sqrt 3 a}}{2}\).

Kẻ \(AH \bot SM\,\,\left( {H \in SM} \right)\) thì \(AH \bot \left( {SCD} \right)\).

Ta có \(GI = \frac{1}{3}AI\) nên \(d\left( {G,\left( {SCD} \right)} \right) = \frac{1}{3}d\left( {A,\left( {SCD} \right)} \right) = \frac{1}{3}AH\)

\( = \frac{1}{3}.\frac{{AM.SA}}{{\sqrt {A{M^2} + S{A^2}} }} = \frac{1}{3}.\frac{{\frac{{\sqrt 3 a}}{2}.\sqrt 3 a}}{{\sqrt {\frac{{3{a^2}}}{4} + 3{a^2}} }} = \frac{{\sqrt {15} a}}{{15}}\)

Vậy \(d\left( {G,\left( {SCD} \right)} \right) = \frac{{\sqrt {15} a}}{{15}}\).

Lời giải

Đáp án: 34,1

Đồ thị hàm số có tiệm cận đứng \(x =  - b = 1 \Rightarrow b =  - 1\).

Khi đó đồ thị hàm số \(y = \frac{{x + a}}{{x - 1}}\) qua \(\left( {2\,;\,\,3} \right) \Rightarrow 3 = \frac{{2 + a}}{{2 - 1}} \Rightarrow a = 1\); hàm số là  (C).

Ta nhận thấy để khoảng cách từ điểm m thuộc khu vườn đến hai đường thẳng là nhỏ nhất thì điểm M phải thuộc đồ thị hàm số.

Gọi \(M\left( {{x_0}\,;\,\,\frac{{{x_0} + 1}}{{{x_0} - 1}}} \right) \in \left( C \right),\,\,{x_0} > 1\). Tổng khoảng cách từ M đến hai đường thẳng \({\Delta _1},\,\,{\Delta _2}\) là

\(d = d\left( {M\,,\,\,{\Delta _1}} \right) + d\left( {M\,,\,\,{\Delta _2}} \right) = \frac{{\left| {2{x_0} + \frac{{{x_0} + 1}}{{{x_0} - 1}} - 4} \right|}}{{\sqrt 5 }} + \frac{{\left| {{x_0} + 2 \cdot \frac{{{x_0} + 1}}{{{x_0} - 1}} - 2} \right|}}{{\sqrt 5 }}\) ;

\(\sqrt 5 d = \left| {\frac{{2x_0^2 - 5{x_0} + 5}}{{{x_0} - 1}}} \right| + \left| {\frac{{x_0^2 - {x_0} + 4}}{{{x_0} - 1}}} \right| = \frac{{2x_0^2 - 5{x_0} + 5}}{{{x_0} - 1}} + \frac{{x_0^2 - {x_0} + 4}}{{{x_0} - 1}}\)

(vì \(\left\{ \begin{array}{l}2x_0^2 - 5{x_0} + 5 > 0\\{x_0} - 1 > 0\\x_0^2 - {x_0} + 4 > 0\end{array} \right.\,,\,\,\forall {x_0} > 1\)).

Đặt \(\sqrt 5 d = \frac{{3x_0^2 - 6{x_0} + 9}}{{{x_0} - 1}} = g\left( x \right)\) với \(x > 1\).

Ta có: \(g'\left( x \right) = \frac{{3x_0^2 - 6{x_0} - 3}}{{{{\left( {{x_0} - 1} \right)}^2}}}\); \(g'\left( x \right) = 0 \Rightarrow 3x_0^2 - 6{x_0} - 3 = 0 \Rightarrow {x_0} = 1 + \sqrt 2  > 1\).

Ta có: .

Dấu đẳng thức xảy ra khi \({x_0} = 1 + \sqrt 2 \)\( \Rightarrow M\left( {1 + \sqrt 2 \,;\,\,1 + \sqrt 2 } \right)\).

Khoảng cách OM trên thực tế là  mét.

Câu 3

a) Thể tích khối lăng trụ \(ABC.\,A'B'C'\) bằng 8.
Đúng
Sai
b) Khoảng cách giữa hai đường thẳng \(A'C\) và \(FE\) bằng \(\frac{6}{7}\).
Đúng
Sai
c) Đường thẳng AB vuông góc với đường thẳng AC'.
Đúng
Sai
d) Côsin của góc giữa đường thẳng \(A'C\) và mặt phẳng đáy \(\left( {ABC} \right)\) bằng \(\frac{3}{5}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Hàm số đồng biến trên khoảng \[\left( {0; + \infty } \right)\].
Đúng
Sai
b) Đồ thị hàm số có đường tiệm cận đứng là \[x = 1\].
Đúng
Sai
c) Theo khảo sát, tổng doanh thu của doanh nghiệp này được mô tả bằng hàm số \[R\left( x \right) = {x^2} + 2x\] và lợi nhuận thu về khi bán 200 sản phẩm là 5250 USD. Khi chi phí theo số sản phẩm đạt giá trị nhỏ nhất, số sản phẩm sản xuất được (làm tròn đến hàng đơn vị) là 25 sản phẩm.
Đúng
Sai
d) Hàm số có thể viết lại dưới dạng \[f\left( x \right) = \frac{1}{3}x + 1 + \frac{d}{{x + 1}}\], với d là số thực thuộc \[\mathbb{R}\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[90^\circ \].             
B. \[60^\circ \].           
C. \[30^\circ \].                                   
D. \[45^\circ \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \( - \infty \).              
B. \( + \infty \).             
C. 1.                                    
D. −1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left[ {11;{\rm{ }}13} \right)\].                    

B. \[\left[ {13;{\rm{ }}15} \right)\].                                    
C. \[\left[ {9;{\rm{ }}11} \right)\].                                      
D. \[\left[ {7;{\rm{ }}9} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP