Tìm tham số m để phương trình có nghiệm thuộc vào đoạn (nhập đáp án vào ô trống)
Đáp án: __
Quảng cáo
Trả lời:
Đáp án đúng là "2"
Phương pháp giải
Biến đổi phương trình và biện luận theo \(m\)
Lời giải
Ta có: \({m^2}{\rm{ln}}\left( {\frac{x}{e}} \right) = \left( {2 - m} \right){\rm{ln}}x - 4\)
\( \Leftrightarrow {m^2}\left( {{\rm{ln}}x - 1} \right) = \left( {2 - m} \right){\rm{ln}}x - 4 \Leftrightarrow \left( {{m^2} + m - 2} \right){\rm{ln}}x = {m^2} - 4\). (1)
Với \({m^2} + m - 2 = 0 \Rightarrow m = 1(m > 0)\)
(1) \( \Leftrightarrow 0.{\rm{ln}}x = - 3\) ( Vô lý) Suy ra loại \(m = 1\)
Với \(m \ne 1\)
(1) \( \Leftrightarrow {\rm{ln}}x = \frac{{m - 2}}{{m - 1}}\) (2).
Hàm số \(y = {\rm{ln}}x\) đồng biến trên \(\left[ {\frac{1}{e};1} \right]\), suy ra \({\rm{ln}}x \in \left[ { - 1;0} \right]\).
Phương trình (2) có nghiệm thuộc đoạn \(\left[ {\frac{1}{e};1} \right]\) khi:
\( - 1 \le \frac{{m - 2}}{{m - 1}} \le 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\frac{{m - 2}}{{m - 1}} \ge - 1}\\{\frac{{m - 2}}{{m - 1}} \le 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{c}}{m \ge \frac{3}{2}}\\{m < 1}\end{array}} \right.}\\{1 < m \le 2}\end{array} \Leftrightarrow \frac{3}{2} \le m \le 2} \right.} \right.\) suy ra \(m = 2\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là "2/3"
Phương pháp giải
Xác suất có điều kiện.
Lời giải
Gọi A là biến cố "người được chọn là nam"
Gọi \(B\) là biến cố "Người được chọn là người phải trực"
Khi đó ta có \(\overline A \) là biến cố "người được chọn là nữ", suy ra \[P\left( {\overline A } \right) = \frac{{30}}{{100}} = \frac{3}{{10}}\].
Là biến cố "người được chọn là nữ gần cơ quan", suy ra \(P\left( {B\overline A } \right) = \frac{{60 - 40}}{{100}} = \frac{2}{{10}}\).
Xác suất người được chọn là nữ và là người trực cơ quan là
\(P\left( {B\mid A} \right) = \frac{{P\left( {B\overline A } \right)}}{{P\left( {\overline A } \right)}} = \frac{{\frac{2}{{10}}}}{{\frac{3}{{10}}}} = \frac{2}{3}\).
Lời giải
Đáp án đúng là "10"
Phương pháp giải
Công thức tích phân.
Lời giải
Ta có \(v\left( 6 \right) = {v_0} \Leftrightarrow a = {v_0} + 15\) suy ra \(v\left( t \right) = \frac{{ - 5}}{2}t + {v_0} + 15\).
Gọi \(n\) là thời điểm vật dừng hẳn, khi đó ta có
\(v\left( n \right) = 0 \Leftrightarrow n = \frac{2}{5}\left( {{v_0} + 15} \right) \Leftrightarrow n = \frac{{2{v_0}}}{5} + 6\).
Khi đó ta có phương trình tổng quãng đường vật đi được là
\( \Leftrightarrow 80 = 6.{v_0} - \frac{5}{4}\left( {{n^2} - {6^2}} \right) + {v_0}\left( {n - 6} \right) + 15\left( {n - 6} \right)\)
\( \Leftrightarrow 80 = 6.{v_0} - \frac{5}{4}\left( {\frac{{4{{\left( {{v_0}} \right)}^2}}}{{25}} + \frac{{24{v_0}}}{{25}}} \right) + {v_0}\frac{{2{v_0}}}{5} + 15\frac{{2{v_0}}}{5}\)
\( \Leftrightarrow v_0^2 + 36{v_0} - 400 = 0 \Leftrightarrow {v_0} = 10\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
