Bảng dưới cho biết thời gian di chuyển tính bằng phút của các tuyến xe buýt giữa các bến xe \(A,B,C,D,E\). Số nằm tại ô giao của hàng cột là số phút xe buýt đi từ bến này đến bến kia, dấu \( \times \) biểu thị giữa hai bến này không có tuyến xe buýt. Bạn Lan đi từ bến xe \(A\) đến bến xe \(D\) bằng cung đường nhanh nhất thì mất bao nhiêu phút (không kể thời gian chờ xe buýt)
|
|
A |
B |
C |
D |
E |
|
A |
|
30 |
20 |
\( \times \) |
30 |
|
B |
|
|
45 |
60 |
30 |
|
C |
|
|
|
45 |
30 |
|
D |
|
|
|
|
30 |
|
E |
|
|
|
|
|
Quảng cáo
Trả lời:
Đáp án đúng là A
Phương pháp giải
Tư duy - logic
Lời giải
Vì không có tuyến xe từ \(A\) đến \(D\) nên bạn Lan phải đi qua tuyến \(B\) hoặc \(C\) hoặc \(E\).
Khi đó ta có nếu:
Lan đi qua bến xe \(B\) thì tổng thời gian là: 30 + 60 = 90 phút
Lan đi qua bến xe \(C\) thì tổng thời gian là: \(20 + 45 = 65\) phút
Lan đi qua bến xe \(E\) thì tổng thời gian là: \(30 + 30 = 60\) phút
Vậy cung đường nhanh nhất để Lan đi từ bến \(A\) đến bến \(D\) là đi qua bến \(E\) với tổng thời gian là 60 phút.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là "2/3"
Phương pháp giải
Xác suất có điều kiện.
Lời giải
Gọi A là biến cố "người được chọn là nam"
Gọi \(B\) là biến cố "Người được chọn là người phải trực"
Khi đó ta có \(\overline A \) là biến cố "người được chọn là nữ", suy ra \[P\left( {\overline A } \right) = \frac{{30}}{{100}} = \frac{3}{{10}}\].
Là biến cố "người được chọn là nữ gần cơ quan", suy ra \(P\left( {B\overline A } \right) = \frac{{60 - 40}}{{100}} = \frac{2}{{10}}\).
Xác suất người được chọn là nữ và là người trực cơ quan là
\(P\left( {B\mid A} \right) = \frac{{P\left( {B\overline A } \right)}}{{P\left( {\overline A } \right)}} = \frac{{\frac{2}{{10}}}}{{\frac{3}{{10}}}} = \frac{2}{3}\).
Lời giải
Đáp án đúng là "10"
Phương pháp giải
Công thức tích phân.
Lời giải
Ta có \(v\left( 6 \right) = {v_0} \Leftrightarrow a = {v_0} + 15\) suy ra \(v\left( t \right) = \frac{{ - 5}}{2}t + {v_0} + 15\).
Gọi \(n\) là thời điểm vật dừng hẳn, khi đó ta có
\(v\left( n \right) = 0 \Leftrightarrow n = \frac{2}{5}\left( {{v_0} + 15} \right) \Leftrightarrow n = \frac{{2{v_0}}}{5} + 6\).
Khi đó ta có phương trình tổng quãng đường vật đi được là
\( \Leftrightarrow 80 = 6.{v_0} - \frac{5}{4}\left( {{n^2} - {6^2}} \right) + {v_0}\left( {n - 6} \right) + 15\left( {n - 6} \right)\)
\( \Leftrightarrow 80 = 6.{v_0} - \frac{5}{4}\left( {\frac{{4{{\left( {{v_0}} \right)}^2}}}{{25}} + \frac{{24{v_0}}}{{25}}} \right) + {v_0}\frac{{2{v_0}}}{5} + 15\frac{{2{v_0}}}{5}\)
\( \Leftrightarrow v_0^2 + 36{v_0} - 400 = 0 \Leftrightarrow {v_0} = 10\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
