Cho hình chữ nhật có chu vi bằng \[30\;cm\]. Nếu chiều rộng tăng thêm \[3\;cm\] và chiều dài giảm đi \[1\;cm\] thì diện tích của hình chữ nhật đó sẽ tăng thêm \[18\;c{m^2}\]. Tính chiều rộng và chiều dài của hình chữ nhật đã cho.
Cho hình chữ nhật có chu vi bằng \[30\;cm\]. Nếu chiều rộng tăng thêm \[3\;cm\] và chiều dài giảm đi \[1\;cm\] thì diện tích của hình chữ nhật đó sẽ tăng thêm \[18\;c{m^2}\]. Tính chiều rộng và chiều dài của hình chữ nhật đã cho.
Quảng cáo
Trả lời:
Gọi chiều rộng, chiều dài của hình chữ nhật lần lượt là \[x,y\;\left( {x,y > 0} \right)\], đơn vị: \[cm\].
Khi đó ta có: \[2\left( {x + y} \right) = 30 \Leftrightarrow x + y = 15\]
Khi chiều rộng tăng thêm \[3\;cm\] và chiều dài giảm đi \[1\;cm\] thì diện tích của hình chữ nhật đó sẽ tăng thêm \[18\;c{m^2}\]nên ta có phương trình
\[\left( {x + 3} \right)\left( {y - 1} \right) = xy + 18 \Leftrightarrow - x + 3y = 21\].
Từ đó ta có hệ phương trình:
\[\left\{ \begin{array}{l}x + y = 15\\ - x + 3y = 21\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y = 9\end{array} \right.\] (thỏa mãn điều kiện).
Vậy, chiều rộng, chiều dài của hình chữ nhật lần lượt là \[6\left( {cm} \right);9\left( {cm} \right)\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a. Hàm số \[y = 2x + m\] đồng biến trên \[\mathbb{R}\].
Vì \[x = 2 > 0\]
b. Đồ thị hàm số \[y = 2x + m\] đi qua điểm \[A\left( {1;3} \right)\] khi và chỉ khi
\[3 = 2.1 + m \Leftrightarrow m = 1\].
Lời giải
Ta có: \[a + b + c = 1 + \left( { - 3} \right) + 2 = 0\]
Do đó phương trình đã cho có hai nghiệm phân biệt \[{x_1} = 1\];
\[{x_2} = 2\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.