Câu hỏi:

05/01/2026 18 Lưu

Tìm tất cả các giá trị của tham số \(m\) sao cho đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{mx - 6}}{{x - m + 1}}\) tiếp xúc với parobol \(y = {x^2} + 5\).

A. 5.   
B. 4.       
C. 3.     
D. 2.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là A

Phương pháp giải

Xác định tiếp tuyến.

Lời giải

Để đồ thị hàm số có tiệm cận ngang thì nghiệm của đa thức ở mẫu không là nghiệm của đa thức ở tử, khi đó \(m\left( {1 - m} \right) + 6 \ne 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m \ne 3}\\{m \ne - 2}\end{array}} \right.\)

Khi đó đồ thị hàm số có đường tiệm cận ngang là \(y = m\).

\(y = m\) tiếp xúc với parapol \(y = {x^2} + 5 \Leftrightarrow m = 5\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(1) 2640

Đáp án đúng là "2640"

Phương pháp giải

Tính giá trị nhỏ nhất

Lời giải

Gọi \(x,y\) lần lượt là chiều rộng và chiều dài của đáy hình hộp.

Điều kiện: \(x > 0;y > 0\left( m \right)\).

Ta có thể tích của khối hộp: \(V = 1xy = 400 \Rightarrow xy = 400 \Rightarrow y = \frac{{400}}{x}\left( {{m^3}} \right)\).

Diện tích mặt đáy: \({S_d} = xy = x.\frac{{400}}{x} = 400\left( {{{\rm{m}}^2}} \right)\).

Giá tiền để làm mặt đáy là: \(400.4000000 = {16.10^8}\) (đồng).

Diện tích xung quanh của bể cá: \({S_{xq}} = 2.x.1 + 2.y.1 = 2.\left( {x + y} \right) = 2.\left( {x + \frac{{400}}{x}} \right)\).

Giá tiền để làm mặt bên là: \(2.\left( {x + \frac{{400}}{x}} \right).3000000 = {6.10^6}.\left( {x + \frac{{400}}{x}} \right)\).

Tổng chi phí để xây dựng bể cá là:

\(T\left( x \right) = {6.10^6}.\left( {x + \frac{{400}}{x}} \right) + {24.10^8} \ge {6.10^6}.2\sqrt {x.\frac{{400}}{x}}  + {24.10^8} \approx 2640{\rm{\;}}\) (triệu đồng).

Câu 2

A. \({u_n} = 2025 + \frac{{\left( {n + 2} \right)\left( {n + 1} \right)}}{2}\).    
B. \({u_n} = 2025 + \frac{{n\left( {n + 1} \right)}}{2}\).
C. \({u_n} = 2025 + \frac{{n\left( {n - 1} \right)}}{2}\)
D. \({u_n} = \frac{{n\left( {n - 1} \right)}}{2}\).

Lời giải

Đáp án đúng là C

Phương pháp giải

Tìm số hạng tổng quát của dãy số.

Lời giải

Ta có \(\left\{ {\begin{array}{*{20}{l}}{{u_1} = 2025}\\{{u_{n + 1}} = {u_n} + n\left( {\forall n \in {\mathbb{N}^{\rm{*}}}} \right)}\end{array}} \right.\)

Suy ra

\({u_2} = {u_1} + 1\);

\({u_3} = {u_2} + 2\);

\({u_4} = {u_3} + 3\);

...

\({u_n} = {u_{n - 1}} + n - 1\)

Cộng vế theo vế ta có

\({u_2} + {u_3} + {u_4} + \ldots + {u_n} = {u_1} + {u_2} + {u_3} + \ldots + {u_{n - 1}} + 1 + 2 + 3 + \ldots + \left( {n - 1} \right)\)

\( \Leftrightarrow {u_n} = {u_1} + 1 + 2 + 3 + \ldots + \left( {n - 1} \right) \Leftrightarrow {u_n} = 2025 + \frac{{n\left( {n - 1} \right)}}{2}\).

Câu 3

A. 2,5.     
B. 3.         
C. 1.                   
D. 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP