Một cái thùng có thể chứa tối đa 14 kg thanh long hoặc 21 kg nhãn. Người ta chứa đầy thùng đó bằng cả thanh long và nhãn thì nhận thấy: tổng khối lượng trái cây chứa trong thùng là 18 kg. Tính khối lượng trái cây mỗi loại có trong thùng.
Một cái thùng có thể chứa tối đa 14 kg thanh long hoặc 21 kg nhãn. Người ta chứa đầy thùng đó bằng cả thanh long và nhãn thì nhận thấy: tổng khối lượng trái cây chứa trong thùng là 18 kg. Tính khối lượng trái cây mỗi loại có trong thùng.
Quảng cáo
Trả lời:
Đáp án đúng là C
Phương pháp giải
Giải bài toán bằng cách lập hệ phương trình.
Lời giải
Gọi \(x,y\left( {{\rm{kg}}} \right)\) lần lượt là khối lượng thanh long và nhãn chứa trong thùng 18 kg. Điều kiện\(0 \le x,y \le 18\)
Vi tổng khối lượng trái cây chứa trong thùng là 18 kg nên ta có phương trình \(x + y = 18\) (1)
Vì cái thùng có thể chứa tối đa 14 kg thanh long nên cứ 1 kg thanh long sẽ chiếm \(\frac{1}{{14}}\) thể tích cái thùng, do đó \(x\) kg thanh long sẽ chiếm \(\frac{x}{{14}}\) thể tích cái thùng.
Vì cái thùng có thể chứa tối đa 21 kg nhãn nên cứ 1 kg nhãn sẽ chiếm \(\frac{1}{{21}}\) thể tích cái thùng, do đó \(y{\rm{\;kg}}\) nhãn sẽ chiếm \(\frac{y}{{21}}\) thể tích cái thùng.
Vì người ta chứa đầy thùng đó bằng \(x{\rm{\;kg}}\) thanh long và \(y{\rm{\;kg}}\) nhãn nên ta có phương trình
\(\frac{x}{{14}} + \frac{y}{{21}} = 1\) (2)
Từ (1) và (2) ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x + y = 18}\\{\frac{x}{{14}} + \frac{y}{{21}} = 1}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x = 6}\\{y = 12}\end{array}} \right.} \right.\) (thỏa điều kiện).
Vậy khối lượng thanh long có trong thùng là 6 kg, khối lượng nhãn có trong thùng là 12 kg.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là B
Phương pháp giải
Áp dụng công thức: \(T = A.{(1 + r)^n}\).
Lời giải
Số kì hạn (tháng) trả lãi của anh Thành sau 3 năm là: \(3.12 = 36\) (tháng)
Số tiền cả gốc lẫn lãi anh Thành phải trả cho ngân hàng sau đúng 3 năm kể từ ngày vay là:
\(400.{(1 + 1{\rm{\% }})^{36}} \approx 572,3\) (triệu đồng)
Vậy trong các số đề cho, số tiền anh Thành phải trả gần nhất với 573 triệu đồng.
Lời giải
Đáp án đúng là D
Phương pháp giải
Sự tương giao giữa hai đồ thị.
Lời giải
\({\left( {2{x^2} + 4x + 2} \right)^{\frac{3}{4}}}.f\left( {{x^2} + 2x + 1} \right) = 1 \Leftrightarrow f\left( {{x^2} + 2x + 1} \right) = {\left[ {2\left( {{x^2} + 2x + 1} \right)} \right]^{ - \frac{3}{4}}}\) (*)
Đặt \(t = {x^2} + 2x + 1\). Ta có \(t = {(x + 1)^2} \ge 0\). Khi đó (*) trở thành \(f\left( t \right) = {(2t)^{ - \frac{3}{4}}}\).
Xét hàm số \(g\left( t \right) = {(2t)^{ - \frac{3}{4}}}\) trên \(\left[ {0; + \infty } \right)\).
TXĐ: \(D = \left( {0; + \infty } \right)\).
\(g'\left( t \right) = - \frac{3}{2}{(2t)^{ - \frac{7}{4}}} < 0\forall x \in \left( {0; + \infty } \right)\).
Do đó hàm số \(g\left( t \right) = {(2t)^{ - \frac{3}{4}}}\) nghịch biến trên \(\left( {0; + \infty } \right)\).
BBT

Dựa vào bảng biến thiên, ta có sự tương giao của hai đồ thị hàm số \(y = f\left( t \right)\) và \(y = g\left( t \right)\) như sau:

Do đó, phương trình \(f\left( t \right) = {(2t)^{ - \frac{3}{4}}}\) có hai nghiệm \(t\) dương phân biệt là \({t_1}\) và \({t_2}\).
Suy ra \({x^2} + 2x + 1 = {t_1}\,\,(1) \vee {x^2} + 2x + 1 = {t_2}\,\,(2)\).
Phương trình (1) có \({\rm{\Delta '}} = 1 - 1 + {t_1} = {t_1} > 0\) nên có hai nghiệm phân biệt \({x_1},{x_2}\).
Phương trình (2) có \({\rm{\Delta '}} = 1 - 1 + {t_2} = {t_2} > 0\) nên có hai nghiệm phân biệt \({x_3},{x_4}\) khác \({x_1},{x_2}\).
Vậy phương trình \({\left( {2{x^2} + 4x + 2} \right)^{\frac{3}{4}}}.f\left( {{x^2} + 2x + 1} \right) = 1\) có số nghiệm là 4.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

