Đài truyền hình FTV phát sóng hai chương trình truyền hình A và B với xác suất lần lượt là 0,55 và 0,45. Do thời tiết xấu gây nhiễu trên đường truyền nên \(\frac{2}{9}\) các tín hiệu chương trình A bị lệch và phát sóng chương trình B sau khi thu được, còn lại bình thưởng. Còn đối với chương trình B thì \(\frac{1}{5}\) các tín hiệu bị lệch và phát chương trình A sau khi thu được, \(\frac{1}{4}\) các tín hiệu chương trình \(B\) bị mất hẳn không thu được, còn lại bình thường. Ông F đang xem một chương trình truyền hình trên TV, tính xác suất ông F xem được chương trình thu được từ đúng với các tín hiệu lúc phát đi (làm tròn đến hàng phần trăm).
Quảng cáo
Trả lời:
Đáp án:
Gọi \(X\) là biến cố: “ông F xem được chương trình thu được từ đúng với các tín hiệu lúc phát đi”
Ta có sơ đồ cây như sau:

Vậy \(P\left( X \right) = 0,55.\,\left( {1 - \frac{2}{9}} \right) + 0,45.\,\left( {1 - \frac{1}{5} - \frac{1}{4}} \right) \simeq 0,68\).
Gọi \(Y\) là biến cố : “Ông \(F\) đang xem chương trình truyền hình. ”
Khi đó : \(P\left( Y \right) = 1 - 0,45.\frac{1}{4} = 0,8875\).
Suy ra : \(P\left( {X|Y} \right) = \frac{{P\left( {XY} \right)}}{{P\left( Y \right)}} = \frac{{P\left( X \right)}}{{P\left( Y \right)}} = \frac{{0,55.\,\left( {1 - \frac{2}{9}} \right) + 0,45.\,\left( {1 - \frac{1}{5} - \frac{1}{4}} \right)}}{{0,8875}} \simeq 0,76\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Quả táo cách bức tường \(4m\).
b) Một người bắn một mũi tên với đầu mũi tên là \(B\left( {2; - 1;4} \right)\) theo hướng \(\vec a = \left( {2;4;0} \right)\) thì mũi tên bay xuyên qua trái táo.
c) Mũi tên cắm vào bức tường tại điểm \(C\left( {5;5;4} \right)\).
Lời giải
a) Khoảng cách từ quả táo đến bức tường: \(d\left( {M;\left( P \right)} \right) = \frac{{\left| {1 - 2.\left( { - 3} \right) + 2.4 - 3} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {2^2}} }} = \frac{{12}}{3} = 4\).
b) Phương trình đường thẳng qua \(B\) và nhận véctơ \(\overrightarrow a \) làm véc tơ chỉ phương là
\(\Delta :\left\{ \begin{array}{l}x = 2 + 2t\\y = - 1 + 4t\\z = 4\end{array} \right.\)
Thay tọa độ điểm \(M\) vào phương trình đường thẳng trên ta được
\(\left\{ \begin{array}{l}1 = 2 + 2t\\ - 3 = - 1 + 4t\\4 = 4\end{array} \right. \Leftrightarrow t = - \frac{1}{2}\), suy ra điểm \(M\) thuộc đường thẳng \(\Delta \).
Hơn nữa, thay tọa độ điểm \(B\) và \(M\) vào phương trình mặt phẳng \(\left( P \right)\) ta được
\(\left\{ \begin{array}{l}2 + 2 + 8 - 3 > 0\\1 + 6 + 8 - 3 > 0\end{array} \right.\)
Suy ra hai điểm \(B\) và \(M\) nằm cùng phía đối với mặt phẳng \(\left( P \right)\).
\(\overrightarrow {BM} = \left( { - 1; - 2;0} \right)\), \(\overrightarrow {BM} \) ngược hướng với \(\overrightarrow a \).
Vậy mũi tên không xuyên qua quả táo.
c) Xét hệ phương trình
\(\left\{ \begin{array}{l}x - 2y + 2{\rm{z}} - 3 = 0\\x = 2 + 2t\\y = - 1 + 4t\\z = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {2 + 2t} \right) - 2\left( { - 1 + 4t} \right) + 2.4 - 3 = 0\\x = 2 + 2t\\y = - 1 + 4t\\z = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = \frac{3}{2}\\x = 5\\y = 5\\z = 4\end{array} \right.\)
Giao điểm của đường thẳng \(\Delta \) và mặt phẳng \(\left( P \right)\) là điểm \(C\left( {5;5;4} \right)\).
Vậy mũi tên cắm vào bức tường tại điểm \(C\left( {5;5;4} \right)\).
d) Góc giữa mũi tên và mặt đất bằng góc giữa đường thẳng \(\Delta \) và \(\left( Q \right)\).
\(\sin \left( {\Delta ,\left( Q \right)} \right) = \frac{4}{{\sqrt {{2^2} + {4^2}} .\sqrt {{1^2} + {1^2}} }} = \frac{2}{{\sqrt {10} }}\).
\({\rm{cos}}\left( {\Delta ,\left( Q \right)} \right) = \frac{{\sqrt 6 }}{{\sqrt {10} }}\)
Chiều dài bóng của mũi tên \(l = \frac{{\sqrt {39} }}{{10}}.\frac{{\sqrt 6 }}{{\sqrt {10} }} = \frac{{3\sqrt {65} }}{{50}}\).
Lời giải
Thể tích của bể nước là \(V = 4.3.2\sqrt 3 = 24\sqrt 3 \).
Vì thể tích nước bằng \(1/2\) thể tích thể nên độ cao của mặt nước so với mặt phẳng đáy là \(z = \sqrt 3 \)
Khi nghiêng bể quanh trục \(Oy\) một góc \(\alpha \). Mặt nước chứa cạnh \(A'D'\)và thể tích nước bằng \(\frac{1}{2}\) thể tích hình hộp chữa nhật nên mặt nước là mặt phẳng đối xứng qua tâm của hình hộp chữ nhật. Vì vậy mặt phẳng phải đi qua cạnh \(BC\).
Góc nghiêng tạo bởi mặt phẳng đáy với mặt phẳng \(\left( {O\,xy} \right)\) bằng góc tạo bởi mặt phẳng \(\left( {MNEF} \right)\) và mặt phẳng đáy và bằng góc \(\left( {ADD'A'} \right)\) và mặt phẳng \(\left( {zoy} \right)\).
Xét tam giác \(A'AB\) ta có: \(\sin \alpha = \sqrt {\frac{3}{7}} \); \(cos\alpha = \sqrt {\frac{4}{7}} \).

Điểm \(M\) nằm trên \(A\,A'\) nhưng vì mặt nước chạm \(A'\) nên \(M\) trùng \(A' = \left( {0;\,0;\,2\sqrt 3 } \right)\).
Ta có: \(\left\{ \begin{array}{l}{x_{A'}} = A\,A'.\sin \alpha = \frac{{2\sqrt 3 .\sqrt 3 }}{{\sqrt 7 }} = \frac{6}{{\sqrt 7 }}\\{y_{A'}} = 0\\{z_{A'}} = A\,A'.\cos \alpha = \frac{{2\sqrt 3 .\sqrt 4 }}{7} = \frac{{4\sqrt 3 }}{{\sqrt 7 }}\end{array} \right.\)
\(\left\{ \begin{array}{l}{x_C} = {x_B} = 4.\cos \alpha = \frac{8}{{\sqrt 7 }}\\{y_C} = 3\\{z_C} = {z_B} = 4.\sin \alpha = \frac{{4\sqrt 3 }}{{\sqrt 7 }}\end{array} \right.\)
Vì điểm \(I\) mới sau khi nghiêng vẫn thuộc \(ME\) và \(\frac{{MI}}{{ME}} = \frac{{A'I}}{{A'C}} = \frac{2}{5} \Leftrightarrow \overrightarrow {2IC} + 3\overrightarrow {IA'} = 0\)
\( \Leftrightarrow \left\{ \begin{array}{l}2\left( {\frac{8}{{\sqrt 7 }} - {x_o}} \right) + 3\left( {\frac{6}{{\sqrt 7 }} - {x_o}} \right) = 0\\2\left( {3 - {y_o}} \right) + 3\left( { - {y_o}} \right) = 0\\2\left( {\frac{{4\sqrt 3 }}{{\sqrt 7 }} - {z_o}} \right) + 3\left( {\frac{{4\sqrt 3 }}{{\sqrt 7 }} - {z_o}} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_o} = \frac{{34}}{{5\sqrt 7 }}\\{y_o} = \frac{6}{5}\\{z_o} = \frac{{4\sqrt 3 }}{{\sqrt 7 }}\end{array} \right.\)
Vậy \(\frac{{{x_o}}}{{\sqrt 7 }} + 5{y_o} + \frac{{5{z_o}}}{{\sqrt {21} }} = \frac{{34}}{{5.7}} + 5.\frac{6}{5} + \frac{5}{{\sqrt {21} }}.\frac{{4\sqrt 3 }}{{\sqrt 7 }} = \frac{{344}}{{35}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) [NB] Thầy quản nhiệm muốn chia lớp ra thành 4 tổ, mỗi tổ có 10 bạn thì có \(C_{40}^{10}.C_{30}^{10}.C_{20}^{10}\) cách.
b) [TH] Xác suất để thầy quản nhiệm chia lớp ra thành 4 tổ, mỗi tổ có 10 bạn sao cho số lượng nam và nữ của mỗi tổ bằng nhau là \(0,03\). (Làm tròn đến hàng phần trăm)
c) [TH] Thầy quản nhiệm có thể chia lớp ra thành 4 tổ, mỗi tổ có 10 bạn sao cho số lượng các bạn nữ của các tổ lập thành một cấp số cộng và số lượng các bạn nam của mỗi tổ cũng vậy.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) [NB] Toạ độ điểm \(A\) là \(\left( {4;\,0;\,0} \right)\).
b) [TH] Toạ độ \(\overrightarrow {AH} = \left( {4;\,5;\,3} \right)\).
c) [TH] Thể tích của nhà kho là \(70\,\left( {{m^2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



![Mái nhà tranh của ông F được đặt vào trong hệ trục tọa độ \[Oxyz\] với đơn vị là mét với mặt phẳng \[(R):z + 1 = 0\] là mặt đất (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/blobid13-1767803090.png)
