Biết đại lượng \(y\) tỉ lệ nghịch với đại lượng \(x\) theo hệ số tỉ lệ \(a\) và khi \(x = 6\) thì \(y = 5,\) hệ số \(a\) là
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có đại lượng \(y\) tỉ lệ nghịch với đại lượng \(x\) theo hệ số tỉ lệ \(a\) nên \(xy = a\).
Khi \(x = 6\) thì \(y = 5\), suy ra \(a = xy = 5.6 = 30\) .
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) là thời gian 5 máy cày cày xong cánh đồng (\(x > 0,\) giờ)
Vì năng suất làm việc của mỗi máy cày là như nhau và số máy cày tỉ lệ nghịch với thời gian nên ta có:
\(5.x = 4.25\), suy ra \(x = \frac{{4.25}}{5} = 20\) (thỏa mãn).
Vậy 5 máy cày cày xong cánh đồng trong \(20\) giờ.
Lời giải
Gọi số công nhân trong đội thứ nhất, thứ hai, thứ ba lần lượt là \(x,y,z\) người \(\left( {x,y,z \in {\mathbb{N}^*}} \right)\).
Vì khối lượng công việc như nhau nên số người tỉ lệ nghịch với thời gian.
Theo giả thiết \(x,y,z\) tỉ lệ nghịch với \(8;10;12\) nên ta có: \(8x = 12y = 10z\) và \(x - z = 5.\)
Do đó, ta có: \(\frac{{8x}}{{120}} = \frac{{12y}}{{120}} = \frac{{10z}}{{120}}\) hay \(\frac{x}{{15}} = \frac{y}{{12}} = \frac{z}{{10}}\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{x}{{15}} = \frac{y}{{12}} = \frac{z}{{10}} = \frac{{x - z}}{{15 - 10}} = \frac{5}{5} = 1\).
Ta tìm được: \(x = 15,y = 12,z = 10.\)
Do đó, số công nhân trong đội thứ nhất, thứ hai, thứ ba lần lượt là 15, 12, 10 người.
Vậy ba đội công nhân có tất cả số người là \(15 + 12 + 10 = 37\) (người).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. 5 nghìn đồng.
B. 6 nghìn đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.