Câu hỏi:

12/01/2026 5 Lưu

Gieo một đồng xu cân đối (gồm mặt S và N) liên tiếp 2 lần. Môt tả không gian mẫu Ω.

A. \(\Omega  = \left\{ {SN;SS;NN} \right\}\).               
B. \(\Omega  = \left\{ {SN;NS} \right\}\). 
C. \(\Omega  = \left\{ {SN;NS;SS;NN} \right\}\). 
D. \(\Omega  = \left\{ {S;N} \right\}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

\(\Omega  = \left\{ {SN;NS;SS;NN} \right\}\). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Số phần tử của không gian mẫu là \(C_{16}^3 = 560\).

Số phần tử của biến cố “3 số chọn ra có cả số chẵn và số lẻ” là \(C_{10}^1 \cdot C_6^2 + C_{10}^2 \cdot C_6^1 = 420\).

Khi đó xác suất của biến cố là \(P = \frac{{420}}{{560}} = \frac{3}{4} = 0,75\).

Trả lời: 0,75.

Lời giải

Lời giải

a) Số phần tử của không gian mẫu là \(n\left( \Omega  \right) = C_{35}^5 = 324632\).

Gọi \(A\) là biến cố “Chọn 5 học sinh có đúng 3 học sinh nam và 2 nữ”.

Suy ra \(n\left( A \right) = C_{15}^3 \cdot C_{20}^2 = 86450\).

Khi đó \(P\left( A \right) = \frac{{86450}}{{324632}} \approx 0,266\).

b) Gọi \(B\) là biến cố “Chọn 5 học sinh sao cho có ít nhất 1 nam”.

Khi đó \(\overline B \) là biến cố “Chọn được 5 học sinh nữ” nên \[n\left( {\overline B } \right) = C_{20}^5 = 15504\].

Khi đó \(P\left( B \right) = 1 - P\left( {\overline B } \right) = 1 - \frac{{C_{20}^5}}{{C_{35}^5}} \approx 0,95\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP