Với \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - 10}}{{x - 1}} = 5\) và \(g\left( x \right) = \sqrt {f\left( x \right) + 6} - 2\sqrt[3]{{f\left( x \right) - 2}}\) thì \(\mathop {\lim }\limits_{x \to 1} \frac{1}{{\left( {\sqrt x - 1} \right)g\left( x \right)}}\) bằng:
Với \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - 10}}{{x - 1}} = 5\) và \(g\left( x \right) = \sqrt {f\left( x \right) + 6} - 2\sqrt[3]{{f\left( x \right) - 2}}\) thì \(\mathop {\lim }\limits_{x \to 1} \frac{1}{{\left( {\sqrt x - 1} \right)g\left( x \right)}}\) bằng:
Quảng cáo
Trả lời:
\(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - 10}}{{x - 1}} = 5{\rm{ n\^e n }}\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - 10} \right] = 0 \Rightarrow \mathop {\lim }\limits_{x \to 1} f\left( x \right) = 10\).
Ta có \(g\left( x \right) = \sqrt {f\left( x \right) + 6} - 2\sqrt[3]{{f\left( x \right) - 2}} = \left[ {\sqrt {f\left( x \right) + 6} - 4} \right] - \left[ {2\sqrt[3]{{f\left( x \right) - 2}} - 4} \right]\)
\( = \frac{{f\left( x \right) - 10}}{{\sqrt {f\left( x \right) + 6} + 4}} - \frac{{2\left[ {f\left( x \right) - 10} \right]}}{{{{\left[ {\sqrt[3]{{f\left( x \right) - 2}}} \right]}^2} + 2\sqrt[3]{{f\left( x \right) - 2}} + 4}}\).
Suy ra \(\left( {\sqrt x - 1} \right)g\left( x \right) = \left[ {\frac{{f\left( x \right) - 10}}{{\sqrt {f\left( x \right) + 6} + 4}} - \frac{{2\left( {f\left( x \right) - 10} \right)}}{{{{\left( {\sqrt[3]{{f\left( x \right) - 2}}} \right)}^2} + 2\sqrt[3]{{f\left( x \right) - 2}} + 4}}} \right]\left( {\sqrt x - 1} \right)\)
\[ = \frac{{f\left( x \right) - 10}}{{x - 1}}\left[ {\frac{1}{{\sqrt {f\left( x \right) + 6} + 4}} - \frac{2}{{{{\left( {\sqrt[3]{{f\left( x \right) - 2}}} \right)}^2} + 2\sqrt[3]{{f\left( x \right) - 2}} + 4}}} \right]\left( {x - 1} \right)\left( {\sqrt x - 1} \right)\]
\( = \frac{{f\left( x \right) - 10}}{{x - 1}}\left[ {\frac{1}{{\sqrt {f\left( x \right) + 6} + 4}} - \frac{2}{{{{\left( {\sqrt[3]{{f\left( x \right) - 2}}} \right)}^2} + 2\sqrt[3]{{f\left( x \right) - 2}} + 4}}} \right]\left( {\sqrt x + 1} \right){\left( {\sqrt x - 1} \right)^2}\)
Khi đó \(\mathop {\lim }\limits_{x \to 1} \left( {\sqrt x - 1} \right)g\left( x \right)\)
\( = \mathop {\lim }\limits_{x \to 1} \left[ {\frac{{f\left( x \right) - 10}}{{x - 1}}\left( {\frac{1}{{\sqrt {f\left( x \right) + 6} + 4}} - \frac{2}{{{{\left( {\sqrt[3]{{f\left( x \right) - 2}}} \right)}^2} + 2\sqrt[3]{{f\left( x \right) - 2}} + 4}}} \right)\left( {\sqrt x + 1} \right){{\left( {\sqrt x - 1} \right)}^2}} \right]\)
\( = 5\left[ {\frac{1}{{\sqrt {10 + 6} + 4}} - \frac{2}{{{{\left( {\sqrt[3]{{10 - 2}}} \right)}^2} + 2\sqrt[3]{{10 - 2}} + 4}}} \right]\left( {\sqrt 1 + 1} \right){\left( {\sqrt 1 - 1} \right)^2} = 0\).
Mặt khác \(\mathop {\lim }\limits_{x \to 1} \left[ {\frac{{f\left( x \right) - 10}}{{x - 1}}\left( {\frac{1}{{\sqrt {f\left( x \right) + 6} + 4}} - \frac{2}{{{{\left( {\sqrt[3]{{f\left( x \right) - 2}}} \right)}^2} + 2\sqrt[3]{{f\left( x \right) - 2}} + 4}}} \right)\left( {\sqrt x + 1} \right)} \right] = - \frac{5}{{12}}{\rm{. }}\)
Và \({\left( {\sqrt x - 1} \right)^2} > 0\) với \(\forall x \ne 1\) nên \(\mathop {\lim }\limits_{x \to 1} \frac{1}{{\left( {\sqrt x - 1} \right)g\left( x \right)}} = - \infty \). Chọn A.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[ - 2t + 10 = 0 \Leftrightarrow t = 5 \Rightarrow \] Thời gian tính từ lúc bắt đầu đạp phanh đến khi dừng hẳn là \[5\] giây. Vậy trong \[8\] giây cuối cùng thì có \[3\] giây ô tô chuyển động với vận tốc \[10\,\,{\rm{m/s}}\] và \[5\] giây chuyển động chậm dần đều với vận tốc \[v\left( t \right) = - 2t + 10\,\,\left( {{\rm{m/s}}} \right)\].
Khi đó, quãng đường ô tô di chuyển là \[S = 3 \cdot 10 + \int\limits_0^5 {\left( { - 2t + 10} \right)} \,dt = 30 + 25 = 55\,\,\left( m \right)\].
Đáp án cần nhập là: \(55\).
Câu 2
Lời giải
Vì đường thẳng \(d\) vuông góc với mặt phẳng \(\left( P \right)\) nên \(d\) nhận vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) làm một vectơ chỉ phương.
Do đó đường thẳng \(d\) đi qua điểm \(A\) và có vectơ chỉ phương là \(\overrightarrow u = \left( {2;\,0;\, - 3} \right)\).
Vậy phương trình đường thẳng \(d\) là: \[\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2\\z = 5 - 3t\end{array} \right.\] (t là tham số). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Cho hàm số y = f( x] có bảng biến thiên như sau: (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/blobid1-1768272301.png)