Cho một tấm nhôm hình vuông cạnh 12 cm. Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng x (cm) rồi gập tấm nhôm lại để được một cái hộp không nắp (tham khảo hình vẽ bên). Với giá trị nào của x thì hộp nhận được có thể tích lớn nhất, giả thiết bề dày tấm tôn không đáng kể (nhập đáp án vào ô trống).

Đáp án __
Quảng cáo
Trả lời:
Hình hộp có đáy là hình vuông cạnh \[12 - 2x\] (cm).
Chiều cao của hình hộp là \[x\] (cm). Thể tích hình hộp là \[y = x{\left( {12 - 2x} \right)^2}\] (cm3).
Bài toán đưa về tìm \[x \in \left( {0\,;\,\,6} \right)\] để hàm số \[y = f\left( x \right) = x{\left( {12 - 2x} \right)^2}\] có giá trị lớn nhất.
Ta có: \[y' = 1 \cdot {\left( {12 - 2x} \right)^2} + x \cdot 2 \cdot \left( {12 - 2x} \right) \cdot \left( { - 2} \right) = \left( {12 - 2x} \right)\left( {12 - 6x} \right)\].
\[y'\] xác định \[\forall x \in \left( {0\,;\,\,6} \right)\]; \[y' = 0 \Leftrightarrow x = 2\] hoặc \(x = 6\).
Bảng biến thiên của hàm số trên khoảng \(\left( {0;\,6} \right)\) như sau:

Hàm số đạt giá trị lớn nhất tại \[x = 2\].
Đáp án cần nhập là: \(2\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[ - 2t + 10 = 0 \Leftrightarrow t = 5 \Rightarrow \] Thời gian tính từ lúc bắt đầu đạp phanh đến khi dừng hẳn là \[5\] giây. Vậy trong \[8\] giây cuối cùng thì có \[3\] giây ô tô chuyển động với vận tốc \[10\,\,{\rm{m/s}}\] và \[5\] giây chuyển động chậm dần đều với vận tốc \[v\left( t \right) = - 2t + 10\,\,\left( {{\rm{m/s}}} \right)\].
Khi đó, quãng đường ô tô di chuyển là \[S = 3 \cdot 10 + \int\limits_0^5 {\left( { - 2t + 10} \right)} \,dt = 30 + 25 = 55\,\,\left( m \right)\].
Đáp án cần nhập là: \(55\).
Câu 2
Lời giải
Vì đường thẳng \(d\) vuông góc với mặt phẳng \(\left( P \right)\) nên \(d\) nhận vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) làm một vectơ chỉ phương.
Do đó đường thẳng \(d\) đi qua điểm \(A\) và có vectơ chỉ phương là \(\overrightarrow u = \left( {2;\,0;\, - 3} \right)\).
Vậy phương trình đường thẳng \(d\) là: \[\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2\\z = 5 - 3t\end{array} \right.\] (t là tham số). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Cho hàm số y = f( x] có bảng biến thiên như sau: (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/blobid1-1768272301.png)