Trong không gian với hệ tọa độ \[Oxyz,\] cho hình thang cân \[ABCD\] có các đáy lần lượt là \[AB,\,\,CD\]. Biết \(A\left( {3\,;\,\,1\,;\,\, - 2} \right),\,\,B\left( { - 1\,;\,\,3\,;\,\,2} \right),\,\,C\left( { - 6\,;\,\,3\,;\,\,6} \right)\) và \(D\left( {a\,;\,\,b\,;\,\,c} \right)\) với \(a,\,\,b,\,\,c \in \mathbb{R}.\) Giá trị của biểu thức \(T = a + b + c\) bằng:
Quảng cáo
Trả lời:
Cách 1. Ta có \[\overrightarrow {AB} = \left( { - 4\,;\,\,2\,;\,\,4} \right),\,\,\overrightarrow {CD} = \left( {a + 6\,;\,\,b - 3\,;\,\,c - 6} \right)\].
Do \[ABCD\] là hình thang cân có các đáy là \[AB,\,\,CD\] nên \(AB\,{\rm{//}}\,CD\), tức là hai vectơ \(\overrightarrow {AB} ,\,\overrightarrow {CD} \) cùng phương hay \(\frac{{a + 6}}{{ - 2}} = \frac{{b - 3}}{1} = \frac{{c - 6}}{2} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{b = \frac{{ - a}}{2}}\\{c = - a}\end{array}} \right.\). Vậy \(D\left( {a\,;\,\,\frac{{ - a}}{2}\,;\,\, - a} \right).\)
Lại có \(AC = BD \Leftrightarrow A{C^2} = B{D^2} \Leftrightarrow {\left( { - 9} \right)^2} + {2^2} + {8^2} = {\left( {a + 1} \right)^2} + {\left( {\frac{a}{2} + 3} \right)^2} + {\left( {a + 2} \right)^2}\)
\( \Leftrightarrow {a^2} + 4a - 60 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{a = 6}\\{a = - 10}\end{array}} \right.\).
Với \(a = - 10 \Rightarrow D\left( { - 10\,;\,\,5\,;\,\,10} \right).\) Kiểm tra thấy: \(\overrightarrow {AB} = \overrightarrow {CD} \) (loại).
Vớí \(a = 6 \Rightarrow D\left( {6\,;\,\, - 3\,;\,\, - 6} \right).\) Kiểm tra thấy: \(\left( { - 3} \right) \cdot \overrightarrow {AB} = \overrightarrow {CD} .\) Do đó \(T = a + b + c = 6 - 3 - 6 = - 3.\)
Cách 2. Viết phương trình mặt phẳng trung trực của đoạn thẳng \[AB\].
Gọi mặt phẳng \(\left( \alpha \right)\) là mặt phẳng trung trực của đoạn thẳng \[AB\], suy ra mặt phẳng \(\left( \alpha \right)\) đi qua trung điểm \(I\left( {1\,;\,\,2\,;\,\,0} \right)\) của đoạn thẳng AB và có một vectơ pháp tuyến \(\overrightarrow n = \frac{1}{2}\overrightarrow {AB} = \left( { - 2\,;\,\,1\,;\,\,2} \right)\), suy ra phương trình của mặt phẳng \(\left( \alpha \right)\) là: \( - 2x + y + 2z = 0\).
Vì \[C,\,\,D\] đối xứng nhau qua mặt phẳng \(\left( \alpha \right)\) nên \(D\left( {6\,;\,\, - 3\,;\,\, - 6} \right)\).
\[ \Rightarrow a = 6\,;\,\,b = - 3\,;\,\,c = - 6 \Rightarrow T = a + b + c = - 3\]. Chọn A.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[ - 2t + 10 = 0 \Leftrightarrow t = 5 \Rightarrow \] Thời gian tính từ lúc bắt đầu đạp phanh đến khi dừng hẳn là \[5\] giây. Vậy trong \[8\] giây cuối cùng thì có \[3\] giây ô tô chuyển động với vận tốc \[10\,\,{\rm{m/s}}\] và \[5\] giây chuyển động chậm dần đều với vận tốc \[v\left( t \right) = - 2t + 10\,\,\left( {{\rm{m/s}}} \right)\].
Khi đó, quãng đường ô tô di chuyển là \[S = 3 \cdot 10 + \int\limits_0^5 {\left( { - 2t + 10} \right)} \,dt = 30 + 25 = 55\,\,\left( m \right)\].
Đáp án cần nhập là: \(55\).
Câu 2
Lời giải
Vì đường thẳng \(d\) vuông góc với mặt phẳng \(\left( P \right)\) nên \(d\) nhận vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) làm một vectơ chỉ phương.
Do đó đường thẳng \(d\) đi qua điểm \(A\) và có vectơ chỉ phương là \(\overrightarrow u = \left( {2;\,0;\, - 3} \right)\).
Vậy phương trình đường thẳng \(d\) là: \[\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2\\z = 5 - 3t\end{array} \right.\] (t là tham số). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Cho hàm số y = f( x] có bảng biến thiên như sau: (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/blobid1-1768272301.png)