Trong không gian với hệ tọa độ \[Oxyz,\] cho hình thang cân \[ABCD\] có các đáy lần lượt là \[AB,\,\,CD\]. Biết \(A\left( {3\,;\,\,1\,;\,\, - 2} \right),\,\,B\left( { - 1\,;\,\,3\,;\,\,2} \right),\,\,C\left( { - 6\,;\,\,3\,;\,\,6} \right)\) và \(D\left( {a\,;\,\,b\,;\,\,c} \right)\) với \(a,\,\,b,\,\,c \in \mathbb{R}.\) Giá trị của biểu thức \(T = a + b + c\) bằng:
Quảng cáo
Trả lời:
Cách 1. Ta có \[\overrightarrow {AB} = \left( { - 4\,;\,\,2\,;\,\,4} \right),\,\,\overrightarrow {CD} = \left( {a + 6\,;\,\,b - 3\,;\,\,c - 6} \right)\].
Do \[ABCD\] là hình thang cân có các đáy là \[AB,\,\,CD\] nên \(AB\,{\rm{//}}\,CD\), tức là hai vectơ \(\overrightarrow {AB} ,\,\overrightarrow {CD} \) cùng phương hay \(\frac{{a + 6}}{{ - 2}} = \frac{{b - 3}}{1} = \frac{{c - 6}}{2} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{b = \frac{{ - a}}{2}}\\{c = - a}\end{array}} \right.\). Vậy \(D\left( {a\,;\,\,\frac{{ - a}}{2}\,;\,\, - a} \right).\)
Lại có \(AC = BD \Leftrightarrow A{C^2} = B{D^2} \Leftrightarrow {\left( { - 9} \right)^2} + {2^2} + {8^2} = {\left( {a + 1} \right)^2} + {\left( {\frac{a}{2} + 3} \right)^2} + {\left( {a + 2} \right)^2}\)
\( \Leftrightarrow {a^2} + 4a - 60 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{a = 6}\\{a = - 10}\end{array}} \right.\).
Với \(a = - 10 \Rightarrow D\left( { - 10\,;\,\,5\,;\,\,10} \right).\) Kiểm tra thấy: \(\overrightarrow {AB} = \overrightarrow {CD} \) (loại).
Vớí \(a = 6 \Rightarrow D\left( {6\,;\,\, - 3\,;\,\, - 6} \right).\) Kiểm tra thấy: \(\left( { - 3} \right) \cdot \overrightarrow {AB} = \overrightarrow {CD} .\) Do đó \(T = a + b + c = 6 - 3 - 6 = - 3.\)
Cách 2. Viết phương trình mặt phẳng trung trực của đoạn thẳng \[AB\].
Gọi mặt phẳng \(\left( \alpha \right)\) là mặt phẳng trung trực của đoạn thẳng \[AB\], suy ra mặt phẳng \(\left( \alpha \right)\) đi qua trung điểm \(I\left( {1\,;\,\,2\,;\,\,0} \right)\) của đoạn thẳng AB và có một vectơ pháp tuyến \(\overrightarrow n = \frac{1}{2}\overrightarrow {AB} = \left( { - 2\,;\,\,1\,;\,\,2} \right)\), suy ra phương trình của mặt phẳng \(\left( \alpha \right)\) là: \( - 2x + y + 2z = 0\).
Vì \[C,\,\,D\] đối xứng nhau qua mặt phẳng \(\left( \alpha \right)\) nên \(D\left( {6\,;\,\, - 3\,;\,\, - 6} \right)\).
\[ \Rightarrow a = 6\,;\,\,b = - 3\,;\,\,c = - 6 \Rightarrow T = a + b + c = - 3\]. Chọn A.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[ - 2t + 10 = 0 \Leftrightarrow t = 5 \Rightarrow \] Thời gian tính từ lúc bắt đầu đạp phanh đến khi dừng hẳn là \[5\] giây. Vậy trong \[8\] giây cuối cùng thì có \[3\] giây ô tô chuyển động với vận tốc \[10\,\,{\rm{m/s}}\] và \[5\] giây chuyển động chậm dần đều với vận tốc \[v\left( t \right) = - 2t + 10\,\,\left( {{\rm{m/s}}} \right)\].
Khi đó, quãng đường ô tô di chuyển là \[S = 3 \cdot 10 + \int\limits_0^5 {\left( { - 2t + 10} \right)} \,dt = 30 + 25 = 55\,\,\left( m \right)\].
Đáp án cần nhập là: \(55\).
Lời giải
Ruồi đực và ruồi cái (P) đều có thân xám, cánh dài, mắt đỏ giao phối với nhau thu được F1 có kiểu hình ruồi đực thân đen, cánh cụt, mắt trắng → P dị hợp 3 cặp gene. Mặt khác, ở ruồi giấm, hoán vị gene chỉ xảy ra ở con cái → Con đực P có kiểu gene .
Ta có: \(\frac{{{\rm{ab}}}}{{{\rm{ab}}}}{{\rm{X}}^{\rm{D}}}{\rm{Y}} = 0,05 \to \frac{{{\rm{ab}}}}{{{\rm{ab}}}} = 0,2 \to \)Con cái P cho giao tử ab = 0,4 (> 0,25).
Vậy kiểu gene của \(P:\frac{{AB}}{{ab}}{X^D}Y \times \frac{{AB}}{{ab}}{X^D}{X^d}\).
→ Tỉ lệ ruồi cái thân đen, cánh cụt, mắt đỏ ở \({{\rm{F}}_1}\left( {\frac{{{\rm{ab}}}}{{ab}}{{\rm{X}}^{\rm{D}}}{{\rm{X}}^ - }} \right) = 0,2 \times \frac{1}{2} = 10\% .\)Đáp án: 10%.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
