Bác Nam muốn uốn tấm tôn phẳng có dạng hình chữ nhật với bề ngang 40cm thành một rãnh dẫn nước bằng cách chia tấm tôn đó thành ba phần rồi gấp hai bên lại theo một góc vuông sao cho độ cao hai thành rãnh bằng nhau (Hình bên).
Để đảm bảo kĩ thuật, diện tích mặt cắt ngang của rãnh dẫn nước phải lớn hơn hoặc bằng Bác Nam cần làm rãnh dẫn nước có độ cao ít nhất là bao nhiêu centimét (nhập đáp án vào ô trống)?

Đáp án __
Quảng cáo
Trả lời:
Khi chia tấm tôn đó thành ba phần rồi gấp hai bên lại theo một góc vuông như hình vẽ thì mặt cắt ngang là hình chữ nhật có hai kích thước \(x\,(\;{\rm{cm}})\) và \(40 - 2x\,\,(\;{\rm{cm}})\) với \(x \in \left( {0;\,20} \right)\).
Khi đó diện tích mặt cắt ngang là \(\left( {40 - 2x} \right)x\,\,\left( {\;{\rm{c}}{{\rm{m}}^2}} \right).\)
Diện tích mặt cắt ngang của rãnh dẫn nước lớn hơn hoặc bằng \(150\;\,\,{\rm{c}}{{\rm{m}}^2}\) khi và chỉ khi
\(\left( {40 - 2x} \right)x \ge 150 \Leftrightarrow - 2{x^2} + 40x - 150 \ge 0\).
Tam thức \(f\left( x \right) = - 2{x^2} + 40x - 150\) có hai nghiệm \({x_1} = 5,{x_2} = 15\) và hệ số \(a = - 2 < 0\).
Sử dụng định lí về dấu của tam thức bậc hai, suy ra tập nghiệm của bất phương trình \(f\left( x \right) \ge 0\) là đoạn \[\left[ {5\,;\,\,15} \right]\]. Vậy rãnh dẫn nước phải có độ cao ít nhất bằng \(5\,\;{\rm{cm}}\).
Đáp án cần nhập là: \(5\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[ - 2t + 10 = 0 \Leftrightarrow t = 5 \Rightarrow \] Thời gian tính từ lúc bắt đầu đạp phanh đến khi dừng hẳn là \[5\] giây. Vậy trong \[8\] giây cuối cùng thì có \[3\] giây ô tô chuyển động với vận tốc \[10\,\,{\rm{m/s}}\] và \[5\] giây chuyển động chậm dần đều với vận tốc \[v\left( t \right) = - 2t + 10\,\,\left( {{\rm{m/s}}} \right)\].
Khi đó, quãng đường ô tô di chuyển là \[S = 3 \cdot 10 + \int\limits_0^5 {\left( { - 2t + 10} \right)} \,dt = 30 + 25 = 55\,\,\left( m \right)\].
Đáp án cần nhập là: \(55\).
Câu 2
Lời giải
Vì đường thẳng \(d\) vuông góc với mặt phẳng \(\left( P \right)\) nên \(d\) nhận vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) làm một vectơ chỉ phương.
Do đó đường thẳng \(d\) đi qua điểm \(A\) và có vectơ chỉ phương là \(\overrightarrow u = \left( {2;\,0;\, - 3} \right)\).
Vậy phương trình đường thẳng \(d\) là: \[\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2\\z = 5 - 3t\end{array} \right.\] (t là tham số). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Cho hàm số y = f( x] có bảng biến thiên như sau: (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/blobid1-1768272301.png)