Câu hỏi:

13/01/2026 40 Lưu

Có hai hộp đựng bi, các viên bi được đánh các số tự nhiên, trong đó hộp \[I\]\[7\] viên bi được đánh số \[1;\,2\,;\,\,...\,;\,7\]. Lấy ngẫu nhiên từ mỗi hộp một viên bi. Biết rằng xác suất để lấy được viên bi mang số lẻ ở hộp \[II\]\[\frac{6}{{11}}\]. Xác suất để lấy được cả hai viên bi lấy ra đều mang số lẻ là:

A. \[\frac{{13}}{{77}}\].                   
B. \[\frac{2}{{77}}\].  
C. \[\frac{{24}}{{77}}\]. 
D. \[\frac{{86}}{{77}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \[X\] là biến cố “Lấy được cả hai viên bi mang số lẻ”.

Gọi \[A\] là biến cố: “Lấy được viên bi mang số lẻ ở hộp \[I\]”. Khi đó \[P\left( A \right)\, = \,\frac{{C_4^1}}{{C_7^1}}\, = \,\frac{4}{7}\].

Gọi \[B\] là biến cố: “Lấy được viên bi mang số lẻ ở hộp \[II\]”. Theo đề bài \[P\left( B \right)\, = \,\frac{6}{{11}}\].

\[A\]\[B\] là hai biến cố độc lập nên \[X\, = \,AB\].

Theo công thức nhân xác suất ta có: \[P\left( X \right)\, = \,P\left( {AB} \right)\, = \,P\left( A \right) \cdot P\left( B \right)\, = \,\frac{4}{7} \cdot \frac{6}{{11}}\, = \,\frac{{24}}{{77}}\]. Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(1) 55

Ta có \[ - 2t + 10 = 0 \Leftrightarrow t = 5 \Rightarrow \] Thời gian tính từ lúc bắt đầu đạp phanh đến khi dừng hẳn là \[5\] giây. Vậy trong \[8\] giây cuối cùng thì có \[3\] giây ô tô chuyển động với vận tốc \[10\,\,{\rm{m/s}}\]\[5\] giây chuyển động chậm dần đều với vận tốc \[v\left( t \right) = - 2t + 10\,\,\left( {{\rm{m/s}}} \right)\].

Khi đó, quãng đường ô tô di chuyển là \[S = 3 \cdot 10 + \int\limits_0^5 {\left( { - 2t + 10} \right)} \,dt = 30 + 25 = 55\,\,\left( m \right)\].

Đáp án cần nhập là: \(55\).

Câu 2

A. \[\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2 - 3t\\z = 5 - 9t\end{array} \right.\].                   
B. \[\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2 - 3t\\z = 5\end{array} \right.\].
C. \[\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2\\z = 5 - 3t\end{array} \right.\].              
D. \[\left\{ \begin{array}{l}x = 2 + t\\y = - 2t\\z = - 3 + 5t\end{array} \right.\].

Lời giải

Vì đường thẳng \(d\) vuông góc với mặt phẳng \(\left( P \right)\) nên \(d\) nhận vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) làm một vectơ chỉ phương.

Do đó đường thẳng \(d\) đi qua điểm \(A\) và có vectơ chỉ phương là \(\overrightarrow u = \left( {2;\,0;\, - 3} \right)\).

Vậy phương trình đường thẳng \(d\) là: \[\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2\\z = 5 - 3t\end{array} \right.\] (t là tham số). Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

     A. Bắn mình ra xa để trốn thoát.                      
     B. Những chiếc gai nhọn dựng đứng lên tua tủa.                                   
     C. Đánh lừa con mồi.
     D. Làm cho thể tích cơ thể to lên.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\left( { - \infty ; - 2} \right)\].     
  B. \[\left( {0;2} \right)\].     
C. \[\left( {2; + \infty } \right)\].    
D. \[\left( { - 2;0} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Tự do.           
B. Hỗn hợp.        
B. Hỗn hợp.        
D. Lục bát.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP