Xét một bảng ô vuông 4 × 4 như hình vẽ bên. Người ta điền vào mỗi ô vuông đó một trong hai số 1 hoặc –1 sao cho tổng các số trong mỗi hàng hoặc mỗi cột đều bằng 0. Hỏi có bao nhiêu cách điền?

A. \(90.\)
B. \(144.\)
C. \(60.\)
D. \(16.\)
Quảng cáo
Trả lời:
Để mỗi hàng có tổng bằng 0 thì mỗi hàng có các dạng sau:
\(1;1; - 1; - 1\), \( - 1; - 1;1;1\), \(1; - 1;1; - 1\), \( - 1;1; - 1;1\), \(1; - 1; - 1;1\), \( - 1;1;1; - 1\).
Trường hợp 1. Hàng thứ nhất có 6 cách chọn và hàng thứ hai không có số nào giống hàng thứ nhất, khi đó có một cách chọn. Khi đó tổng các cột của hai hàng bằng 0 nên hàng thứ ba có 6 cách chọn. Hàng thứ tư tương tự để tổng các cột bằng 0 thì có duy nhất 1 cách chọn.
Vậy trường hợp 1 có \[6 \cdot 1 \cdot 6 \cdot 1{\rm{ }} = 36\] cách.
Trường hợp 2. Hàng thứ nhất có 6 cách chọn và hàng thứ hai có hai số giống hàng thứ nhất, khi đó hàng thứ hai có 4 cách chọn. Hàng thứ ba có 2 cách chọn và hàng thứ tư có một cách chọn.
Vậy trường hợp 2 có \[6 \cdot 4 \cdot 2 \cdot 1{\rm{ }} = 48\] cách.
Trường hợp 3. Hàng thứ nhất có 6 cách chọn và hàng thứ hai có 4 số giống hàng thứ nhất. Khi đó để tổng 4 cột bằng 0 thì hàng thứ ba có 1 cách chọn và hàng thứ tư có một cách chọn.
Vậy trường hợp 3 có \(6 \cdot 1 \cdot 1 \cdot 1 = 6\) cách.
Vậy có tất cả: \[36 + 48 + 6 = {\rm{ }}90\] cách. Chọn A.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[ - 2t + 10 = 0 \Leftrightarrow t = 5 \Rightarrow \] Thời gian tính từ lúc bắt đầu đạp phanh đến khi dừng hẳn là \[5\] giây. Vậy trong \[8\] giây cuối cùng thì có \[3\] giây ô tô chuyển động với vận tốc \[10\,\,{\rm{m/s}}\] và \[5\] giây chuyển động chậm dần đều với vận tốc \[v\left( t \right) = - 2t + 10\,\,\left( {{\rm{m/s}}} \right)\].
Khi đó, quãng đường ô tô di chuyển là \[S = 3 \cdot 10 + \int\limits_0^5 {\left( { - 2t + 10} \right)} \,dt = 30 + 25 = 55\,\,\left( m \right)\].
Đáp án cần nhập là: \(55\).
Câu 2
Lời giải
Vì đường thẳng \(d\) vuông góc với mặt phẳng \(\left( P \right)\) nên \(d\) nhận vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) làm một vectơ chỉ phương.
Do đó đường thẳng \(d\) đi qua điểm \(A\) và có vectơ chỉ phương là \(\overrightarrow u = \left( {2;\,0;\, - 3} \right)\).
Vậy phương trình đường thẳng \(d\) là: \[\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2\\z = 5 - 3t\end{array} \right.\] (t là tham số). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Cho hàm số y = f( x] có bảng biến thiên như sau: (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/blobid1-1768272301.png)