Câu hỏi:

13/01/2026 52 Lưu

Khoảng 200 năm trước, hai nhà khoa học Pháp là R. Clausius và E. Clapeyron đã thấy rằng áp suất \(p\) của hơi nước (tính bằng milimét thủy ngân, viết tắt là mmHg) gây ra khi nó chiếm khoảng trống phía trên của mặt nước chứa trong một bình kín (xem hình vẽ bên dưới) được tính theo công thức \(p = a \cdot {10^{\frac{k}{{t + 273}}}}\), trong đó \(t\) là nhiệt độ (tính theo đơn vị \(^\circ C\)) của nước, a và k là những hằng số. Cho biết k ~ -2,258,624 

Tính \(a\) biết rằng khi nhiệt độ của nước là \(100^\circ C\) thì áp suất của hơi nước là 760 mmHg (tính chính xác đến hàng phần mười).

A. \(863\,188\,814,4\). 
B. \(863\,188\,41,4\). 
C. \(863\,188\,841,4\). 
D. \(836\,188\,841,4\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Khi \(t = 100^\circ C\) thì \(p = 760\)mmHg. Do đó, ta có phương trình:

\(760 = a \cdot {10^{\frac{{ - 2\,258,624}}{{100 + 273}}}}\)\( \Leftrightarrow a = 863\,188\,841,4\). Chọn C.

Câu hỏi cùng đoạn

Câu 2:

Tính áp suất của hơi nước khi nhiệt độ của nước là \(40^\circ C\) (tính chính xác đến hàng phần mười).

A. \(52,2\) mmHg.        
B. \(52,3\) mmHg.        
C. \(52,4\) mmHg.        
D. \(52,5\) mmHg.

Xem lời giải

verified Giải bởi Vietjack

Áp suất của hơi nước khi nhiệt độ của nước khi nhiệt độ của nước là \(40^\circ C\) là:

\(p = 863\,188\,841,4 \cdot {10^{\frac{{ - 2\,258,624}}{{40 + 273}}}} \approx 52,5\) (mmHg). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(1) 55

Ta có \[ - 2t + 10 = 0 \Leftrightarrow t = 5 \Rightarrow \] Thời gian tính từ lúc bắt đầu đạp phanh đến khi dừng hẳn là \[5\] giây. Vậy trong \[8\] giây cuối cùng thì có \[3\] giây ô tô chuyển động với vận tốc \[10\,\,{\rm{m/s}}\]\[5\] giây chuyển động chậm dần đều với vận tốc \[v\left( t \right) = - 2t + 10\,\,\left( {{\rm{m/s}}} \right)\].

Khi đó, quãng đường ô tô di chuyển là \[S = 3 \cdot 10 + \int\limits_0^5 {\left( { - 2t + 10} \right)} \,dt = 30 + 25 = 55\,\,\left( m \right)\].

Đáp án cần nhập là: \(55\).

Câu 2

A. \[\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2 - 3t\\z = 5 - 9t\end{array} \right.\].                   
B. \[\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2 - 3t\\z = 5\end{array} \right.\].
C. \[\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2\\z = 5 - 3t\end{array} \right.\].              
D. \[\left\{ \begin{array}{l}x = 2 + t\\y = - 2t\\z = - 3 + 5t\end{array} \right.\].

Lời giải

Vì đường thẳng \(d\) vuông góc với mặt phẳng \(\left( P \right)\) nên \(d\) nhận vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) làm một vectơ chỉ phương.

Do đó đường thẳng \(d\) đi qua điểm \(A\) và có vectơ chỉ phương là \(\overrightarrow u = \left( {2;\,0;\, - 3} \right)\).

Vậy phương trình đường thẳng \(d\) là: \[\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2\\z = 5 - 3t\end{array} \right.\] (t là tham số). Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\left( { - \infty ; - 2} \right)\].     
  B. \[\left( {0;2} \right)\].     
C. \[\left( {2; + \infty } \right)\].    
D. \[\left( { - 2;0} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

     A. Bắn mình ra xa để trốn thoát.                      
     B. Những chiếc gai nhọn dựng đứng lên tua tủa.                                   
     C. Đánh lừa con mồi.
     D. Làm cho thể tích cơ thể to lên.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Tự do.           
B. Hỗn hợp.        
B. Hỗn hợp.        
D. Lục bát.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP