Trong không gian với hệ tọa độ \[Oxyz\], cho hai đường thẳng \({d_1}:\frac{{x - 2}}{{ - 1}} = \frac{y}{1} = \frac{z}{1}\) và \({d_2}:\frac{x}{{ - 2}} = \frac{{y - 1}}{1} = \frac{{z - 2}}{1}\). Phương trình mặt phẳng \(\left( P \right)\) song song và cách đều hai đường thẳng \({d_1},\,{d_2}\) là:
Quảng cáo
Trả lời:
Đường thẳng \({d_1}\) đi qua điểm \(A\left( {2;0;0} \right)\) có VTCP là \[\overrightarrow {{u_1}} = \left( { - 1;1;1} \right)\] và đường thẳng \({d_2}\) đi qua điểm \(B\left( {0;1;2} \right)\) có VTCP là \[\overrightarrow {{u_2}} = \left( { - 2;1;1} \right)\].
Mặt phẳng \(\left( P \right)\) song song \({d_1},\,{d_2}\) nên \(\left( P \right)\) có VTPT là \[n = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {0; - 1;1} \right)\].
Do đó mặt phẳng \(\left( P \right)\) có dạng \(y - z + m = 0\).
Mặt khác: \(\left( P \right)\) cách đều hai đường thẳng \({d_1},\,{d_2}\) nên
\(d\left( {{d_1},\left( P \right)} \right) = d\left( {{d_2},\left( P \right)} \right) \Leftrightarrow d\left( {A,\left( P \right)} \right) = d\left( {B,\left( P \right)} \right) \Leftrightarrow \left| m \right| = \left| {m - 1} \right| \Leftrightarrow m = \frac{1}{2}\).
Vậy \(\left( P \right)\):\(y - z + \frac{1}{2} = 0 \Leftrightarrow 2y - 2z + 1 = 0\). Chọn A.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Khi ô tô dừng lại, ta có \(v\left( t \right) = 0 \Leftrightarrow - 2t + 20 = 0 \Leftrightarrow t = 10\).
Vậy từ thời điểm đạp phanh đến khi dừng lại, ô tô di chuyển được thêm 10 giây và quãng đường đi được là: \(s = \int\limits_0^{10} {\left( { - 2t + 20} \right)\,} dt = \left. {\left( { - {t^2} + 20t} \right)} \right|_0^{10} = 100\) (m).
Trong 5 giây trước đó, ô tô vẫn đang đi với vận tốc \(20\;{\rm{m}}/{\rm{s}}\) nên quãng đường đi được trong 5 giây này là: \(5 \cdot 20 = 100\)(m).
Vậy quãng đường mà ô tô đi được trong 15 giây cuối cùng bằng: \(100 + 100 = 200\;\,\left( {\rm{m}} \right)\).
Đáp án cần nhập là: \(200\).
Lời giải
Gọi số mol và số mol \[{C_4}{H_{10}}\] lần lượt là a và 2a, ta có: \[{C_3}{H_8}\]
44a + 58.2a = 12.1000 Þ a = 75 mol
Nhiệt đốt cháy 12 kg gas là Q = 75.2220 + 150.2874 = 597600 (kJ)
Số ngày sử dụng hết bình gas = \(\frac{{597600}}{{10000.\frac{{100}}{{80}}}} = 47,808 \approx 48\) (ngày)
Chọn A.Câu 3
B. \[\frac{{x + 3}}{1} = \frac{{y + 2}}{{ - 2}} = \frac{{z + 2}}{2}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.