Cho vật thể đáy là hình tròn có bán kính bằng 1 (tham khảo hình vẽ). Khi cắt vật thể bằng mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\;\left( { - 1 \le x \le 1} \right)\) thì được thiết diện là một tam giác đều. Thể tích \(V\) của vật thể đó là:
Cho vật thể đáy là hình tròn có bán kính bằng 1 (tham khảo hình vẽ). Khi cắt vật thể bằng mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\;\left( { - 1 \le x \le 1} \right)\) thì được thiết diện là một tam giác đều. Thể tích \(V\) của vật thể đó là:

Quảng cáo
Trả lời:

Do vật thể có đáy là đường tròn và khi cắt bởi mặt phẳng vuông góc với trục \(Ox\) được thiết diện là tam giác đều do đó vật thể đối xứng qua mặt phẳng vuông góc với trục \(Oy\) tại điểm \(O\).
Cạnh của thiết diện tam giác đều là: \(a = 2\sqrt {1 - {x^2}} \).
Diện tích tam giác thiết diện là: \(S = \frac{{{a^2}\sqrt 3 }}{4} = \left( {1 - {x^2}} \right)\sqrt 3 \).
Thể tích khối cần tìm là:
\(V = 2\int\limits_0^1 {Sdx} = 2\int\limits_0^1 {\sqrt 3 \left( {1 - {x^2}} \right)dx = \left. {2\sqrt 3 \left( {x - \frac{{{x^3}}}{3}} \right)} \right|_0^1 = \frac{{4\sqrt 3 }}{3}} \). Chọn C.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Khi ô tô dừng lại, ta có \(v\left( t \right) = 0 \Leftrightarrow - 2t + 20 = 0 \Leftrightarrow t = 10\).
Vậy từ thời điểm đạp phanh đến khi dừng lại, ô tô di chuyển được thêm 10 giây và quãng đường đi được là: \(s = \int\limits_0^{10} {\left( { - 2t + 20} \right)\,} dt = \left. {\left( { - {t^2} + 20t} \right)} \right|_0^{10} = 100\) (m).
Trong 5 giây trước đó, ô tô vẫn đang đi với vận tốc \(20\;{\rm{m}}/{\rm{s}}\) nên quãng đường đi được trong 5 giây này là: \(5 \cdot 20 = 100\)(m).
Vậy quãng đường mà ô tô đi được trong 15 giây cuối cùng bằng: \(100 + 100 = 200\;\,\left( {\rm{m}} \right)\).
Đáp án cần nhập là: \(200\).
Lời giải
Gọi số mol và số mol \[{C_4}{H_{10}}\] lần lượt là a và 2a, ta có: \[{C_3}{H_8}\]
44a + 58.2a = 12.1000 Þ a = 75 mol
Nhiệt đốt cháy 12 kg gas là Q = 75.2220 + 150.2874 = 597600 (kJ)
Số ngày sử dụng hết bình gas = \(\frac{{597600}}{{10000.\frac{{100}}{{80}}}} = 47,808 \approx 48\) (ngày)
Chọn A.Câu 3
B. \[\frac{{x + 3}}{1} = \frac{{y + 2}}{{ - 2}} = \frac{{z + 2}}{2}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.