Câu hỏi:

16/01/2026 9 Lưu

Giả sử các biểu thức đều có nghĩa. Phép tính \(\frac{3}{{2x + 6}} - \frac{{x - 6}}{{2{x^2} + 6x}}\) có kết quả là

A. \(\frac{1}{{x + 3}}.\)  
B. \( - \frac{1}{{x + 3}}.\) 
C. \( - \frac{1}{x}.\)   
D. \(\frac{1}{x}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Ta có \(\frac{3}{{2x + 6}} - \frac{{x - 6}}{{2{x^2} + 6x}} = \frac{3}{{2\left( {x + 3} \right)}} - \frac{{x - 6}}{{2x\left( {x + 3} \right)}}\)

\( = \frac{{3x - \left( {x - 6} \right)}}{{2x\left( {x + 3} \right)}} = \frac{{2x + 6}}{{2x\left( {x + 3} \right)}} = \frac{{2\left( {x + 3} \right)}}{{2x\left( {x + 3} \right)}} = \frac{1}{x}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Với \[x \ne --y;\] \[y \ne --z;\] \[z \ne --x,\] ta có:

\(A = \frac{{{x^2} - yz}}{{\left( {x + y} \right)\left( {x + z} \right)}} + \frac{{{y^2} - xz}}{{\left( {y + x} \right)\left( {y + z} \right)}} + \frac{{{z^2} - xy}}{{\left( {z + x} \right)\left( {z + y} \right)}}\)

\( = \frac{{\left( {{x^2} - yz} \right)\left( {y + z} \right)}}{{\left( {x + y} \right)\left( {y + z} \right)\left( {z + x} \right)}} + \frac{{\left( {{y^2} - xz} \right)\left( {z + x} \right)}}{{\left( {x + y} \right)\left( {y + z} \right)\left( {z + x} \right)}} + \frac{{\left( {{z^2} - xy} \right)\left( {x + y} \right)}}{{\left( {x + y} \right)\left( {y + z} \right)\left( {z + x} \right)}}\)

\( = \frac{{{x^2}y + {x^2}z - {y^2}z - y{z^2} + {y^2}z + x{y^2} - x{z^2} - {x^2}z + {z^2}x + {z^2}y - {x^2}y - x{y^2}}}{{\left( {x + y} \right)\left( {y + z} \right)\left( {z + x} \right)}}\)

\( = \frac{0}{{\left( {x + y} \right)\left( {y + z} \right)\left( {z + x} \right)}} = 0.\)

Vậy \(A = 0.\)

Lời giải

Hướng dẫn giải

a) Điều kiện xác định của biểu thức \[D\] là: \[3x \ne 0;{\rm{ }}x + 1 \ne 0;\]\(\frac{{2 - 4x}}{{x + 1}} \ne 0\)

Xét \[3x \ne 0\] ta có \[x \ne 0.\]

Xét \[x + 1 \ne 0\] ta có \[x \ne --1.\]

Xét \(\frac{{2 - 4x}}{{x + 1}} \ne 0\) ta có \[2--4x \ne 0\] và \[x + 1 \ne 0,\] hay \(x \ne \frac{1}{2}\) và \[x \ne --1.\]

Vậy điều kiện xác định của biểu thức \[D\] là \(x \ne 0;\,\,x \ne  - 1;\,\,x \ne \frac{1}{2}.\)

b) Với \(x \ne 0;\,\,x \ne  - 1;\,\,x \ne \frac{1}{2},\) ta có:

\(D = \left( {\frac{{x + 2}}{{3x}} + \frac{2}{{x + 1}} - 3} \right):\frac{{2 - 4x}}{{x + 1}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{\left( {x + 2} \right)\left( {x + 1} \right) + 2 \cdot 3x - 3 \cdot 3x\left( {x + 1} \right)}}{{3x \cdot \left( {x + 1} \right)}} \cdot \frac{{x + 1}}{{2 - 4x}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{{x^2} + 2x + x + 2 + 6x - 9{x^2} - 9x}}{{3x\left( {x + 1} \right)}}.\frac{{x + 1}}{{2 - 4x}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{ - 8{x^2} + 2}}{{3x\left( {x + 1} \right)}}.\frac{{x + 1}}{{2 - 4x}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{2\left( {1 - 4{x^2}} \right) \cdot \left( {x + 1} \right)}}{{3x\left( {x + 1} \right) \cdot \left( {2 - 4x} \right)}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{2\left( {1 - 2x} \right)\left( {1 + 2x} \right)}}{{3x \cdot 2\left( {1 - 2x} \right)}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{1 + 2x}}{{3x}} - \frac{{3x - {x^2} + 1}}{{3x}} = \frac{{1 + 2x - 3x + {x^2} - 1}}{{3x}}\)

\( = \frac{{{x^2} - x}}{{3x}} = \frac{{x\left( {x - 1} \right)}}{{3x}} = \frac{{x - 1}}{3}\).

Vậy với \(x \ne 0;\,\,x \ne  - 1;\,\,x \ne \frac{1}{2}\) thì \(D = \frac{{x - 1}}{3}.\)

c) Ta có \(\left( {2x - 1} \right)\left( {{x^2} + 1} \right) = 0\)

\(2x - 1 = 0\) hoặc \({x^2} + 1 = 0\) (vô nghiệm do \({x^2} + 1 > 0\) với mọi \(x)\)

\(x = \frac{1}{2}\)

Ta thấy \[x = \frac{1}{2}\] thỏa mãn điều kiện xác định.

Do đó, giá trị của biểu thức \[D\] tại \[x = \frac{1}{2}\] là: \(D = \frac{{\frac{1}{2} - 1}}{3} = \frac{{ - \frac{1}{2}}}{3} =  - \frac{1}{6}.\)

Vậy \(D =  - \frac{1}{6}\) khi \(\left( {2x - 1} \right)\left( {{x^2} + 1} \right) = 0.\)

Câu 3

A. \(\frac{2}{x} - 3 = 0.\) 
B. \(\frac{{ - 1}}{2}x + 2 = 0.\)                   
C. \[x + y = 0.\]  
D. \[0x + 1 = 0.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. ΔABCΔDEF tỉ số đồng dạng là \(2.\)
B. Hai tam giác không đồng dạng.
C. ΔABCΔFED  tỉ số đồng dạng là \(\frac{5}{3}\).     
D. ΔABCΔDEF  tỉ số đồng dạng là \(\frac{5}{3}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{1}{{{x^2} + 1}}.\)                
B. \(\frac{{{x^2} - 4}}{0}.\)    
C. \(\frac{{x + 5}}{3}.\)  
D. \[{x^2}--3x + 1.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{A}{B} = \frac{{ - A}}{{ - B}}.\)   
B. \(\frac{A}{B} = \frac{A}{{ - B}}.\)    
C. \(\frac{A}{B} = \frac{{ - A}}{B}.\) 
D. \(\frac{A}{B} =  - \frac{{ - A}}{{ - B}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP