Giải các phương trình sau:
a) \[3\left( {x - 2} \right) - \left( {2x - 4} \right) = x + 1.\] b) \[{\left( {x + 3} \right)^2} - 13 = x\left( {x + 4} \right).\]a
Giải các phương trình sau:
a) \[3\left( {x - 2} \right) - \left( {2x - 4} \right) = x + 1.\] b) \[{\left( {x + 3} \right)^2} - 13 = x\left( {x + 4} \right).\]aCâu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
a) \[3\left( {x - 2} \right) - \left( {2x - 4} \right) = x + 1\]
\[3x - 6 - 2x + 4 = x + 1\]
\[3x - 2x - x = 1 + 6 - 4\]
\(0x = 3\)
Vậy phương trình đã cho vô nghiệm.
b) \[{\left( {x + 3} \right)^2} - 13 = x\left( {x + 4} \right)\]
\[{x^2} + 6x + 9 - 13 = {x^2} + 4x\]
\[{x^2} - {x^2} + 6x - 4x = 13 - 9\]
\[2x = 4\]
\(x = 2.\)
Vậy phương trình đã cho có nghiệm \(x = 2.\)Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Với \[x \ne --y;\] \[y \ne --z;\] \[z \ne --x,\] ta có:
\(A = \frac{{{x^2} - yz}}{{\left( {x + y} \right)\left( {x + z} \right)}} + \frac{{{y^2} - xz}}{{\left( {y + x} \right)\left( {y + z} \right)}} + \frac{{{z^2} - xy}}{{\left( {z + x} \right)\left( {z + y} \right)}}\)
\( = \frac{{\left( {{x^2} - yz} \right)\left( {y + z} \right)}}{{\left( {x + y} \right)\left( {y + z} \right)\left( {z + x} \right)}} + \frac{{\left( {{y^2} - xz} \right)\left( {z + x} \right)}}{{\left( {x + y} \right)\left( {y + z} \right)\left( {z + x} \right)}} + \frac{{\left( {{z^2} - xy} \right)\left( {x + y} \right)}}{{\left( {x + y} \right)\left( {y + z} \right)\left( {z + x} \right)}}\)
\( = \frac{{{x^2}y + {x^2}z - {y^2}z - y{z^2} + {y^2}z + x{y^2} - x{z^2} - {x^2}z + {z^2}x + {z^2}y - {x^2}y - x{y^2}}}{{\left( {x + y} \right)\left( {y + z} \right)\left( {z + x} \right)}}\)
\( = \frac{0}{{\left( {x + y} \right)\left( {y + z} \right)\left( {z + x} \right)}} = 0.\)
Vậy \(A = 0.\)
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Ta có \(\frac{3}{{2x + 6}} - \frac{{x - 6}}{{2{x^2} + 6x}} = \frac{3}{{2\left( {x + 3} \right)}} - \frac{{x - 6}}{{2x\left( {x + 3} \right)}}\)
\( = \frac{{3x - \left( {x - 6} \right)}}{{2x\left( {x + 3} \right)}} = \frac{{2x + 6}}{{2x\left( {x + 3} \right)}} = \frac{{2\left( {x + 3} \right)}}{{2x\left( {x + 3} \right)}} = \frac{1}{x}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
