Câu hỏi:

20/01/2026 26 Lưu

Cho tam giác \[ABC\] vuông tại \[A{\rm{ }}\left( {AB \ne AC} \right)\] và tam giác \[DEF\] vuông tại \[D\] \[\left( {DE \ne DF} \right).\] Điều nào dưới đây không suy ra được ΔABCΔDEF?

A. \(\widehat {B\,} = \widehat {E\,}.\)  
B. \(\widehat {C\,} = \widehat {F\,}.\)  
C. \(\widehat {B\,} + \widehat {C\,} = \widehat {E\,} + \widehat {F\,}.\)  
D. \(\widehat {B\,} - \widehat {C\,} = \widehat {E\,} - \widehat {F\,}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

⦁ Xét \[\Delta ABC\] và \[\Delta DEF\] có \(\widehat {A\,\,} = \widehat {D\,} = 90^\circ ,\) khi đó để suy ra được ΔABCΔDEF thì cần thêm điều kiện về góc: \(\widehat {B\,} = \widehat {E\,}\) hoặc \(\widehat {C\,} = \widehat {F\,}.\)

⦁ Xét \[\Delta ABC\] vuông tại \[A\] có \(\widehat {B\,} + \widehat {C\,} = 90^\circ .\)

Xét \[DEF\] vuông tại \[D\] có \(\widehat {E\,} + \widehat {F\,} = 90^\circ .\)

Suy ra \(\widehat {B\,} + \widehat {C\,} = \widehat {E\,} + \widehat {F\,}.\) \(\left( 1 \right)\)

Nếu ta có \(\widehat {B\,} - \widehat {C\,} = \widehat {E\,} - \widehat {F\,}\) \(\left( 2 \right)\) thì cộng vế theo vế của \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có \(2\widehat {B\,} = 2\widehat {E\,},\) suy ra \(\widehat {B\,} = \widehat {E\,}.\)

Vậy nếu thêm điều kiện \(\widehat {B\,} + \widehat {C\,} = \widehat {E\,} + \widehat {F\,}\) không suy ra được ΔABCΔDEF.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

 Với \(a \ne b \ne c \ne 0,\) từ \(\frac{a}{{b - c}} + \frac{b}{{c - a}} + \frac{c}{{a - b}} = 0,\) suy ra:

\(\frac{a}{{b - c}} = \frac{b}{{a - c}} + \frac{c}{{b - a}} = \frac{{b\left( {b - a} \right)}}{{\left( {a - c} \right)\left( {b - a} \right)}} + \frac{{c\left( {a - c} \right)}}{{\left( {a - c} \right)\left( {b - a} \right)}} = \frac{{{b^2} - ab + ac - {c^2}}}{{\left( {a - c} \right)\left( {b - a} \right)}}.\)

Nhân hai vế với \(\frac{1}{{b - c}}\) ta được:

\(\frac{a}{{{{\left( {b - c} \right)}^2}}} = \frac{{{b^2} - ab + ac - {c^2}}}{{\left( {a - c} \right)\left( {b - a} \right)\left( {b - c} \right)}} = \frac{{{b^2} - ab + ac - {c^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}.\)

Tương tư, ta có: \(\frac{b}{{{{\left( {c - a} \right)}^2}}} = \frac{{{c^2} - bc + ab - {a^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}};\,\,\frac{c}{{{{\left( {a - b} \right)}^2}}} = \frac{{{a^2} - ca + bc - {b^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}.\)

Cộng vế theo vế ba đẳng thức trên ta được:

\(\frac{a}{{{{\left( {b - c} \right)}^2}}} + \frac{b}{{{{\left( {c - a} \right)}^2}}} + \frac{c}{{{{\left( {a - b} \right)}^2}}}\)

\( = \frac{{{b^2} - ab + ac - {c^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{{c^2} - bc + ab - {a^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{{a^2} - ca + bc - {b^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\)

\( = \frac{0}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} = 0.\)

Vậy \(\frac{a}{{{{\left( {b - c} \right)}^2}}} + \frac{b}{{{{\left( {c - a} \right)}^2}}} + \frac{c}{{{{\left( {a - b} \right)}^2}}} = 0.\)

Câu 2

Giải các phương trình sau:

a) \[x - 3\left( {2 - x} \right) = 2x - 4.\]   b) \[\frac{1}{3}\left( {x - 1} \right) + 4 = \frac{1}{2}\left( {x + 5} \right).\]

Lời giải

Hướng dẫn giải

a) \[x - 3\left( {2 - x} \right) = 2x - 4\]

\[x - 6 + 3x = 2x - 4\]

\[x + 3x - 2x = 6 - 4\]

\[2x = 2\]

\[x = 1\]

Vậy phương trình đã cho có nghiệm \(x = 1.\)

b) \[\frac{1}{3}\left( {x - 1} \right) + 4 = \frac{1}{2}\left( {x + 5} \right)\]

\[2\left( {x - 1} \right) + 24 = 3\left( {x + 5} \right)\]

\[2x - 2 + 24 = 3x + 15\]

\(2x - 3x = 15 + 2 - 24\)

\[ - x =  - 7\]

\[x = 7\]

Vậy phương trình đã cho có nghiệm \(x = 7.\)

Câu 4

A. \(\frac{1}{2}.\) 
B. \(\frac{1}{{2y}}.\)
C. \(\frac{{2x}}{{{y^2}}}.\)
D. \(\frac{{2{x^2}}}{{{y^2}}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(2x - {2^2} = 0.\) 
B. \({x^2} = 1.\)  
C. \(x - y = 0.\)  
D. \(1 - \frac{1}{x} = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{{x^2} - 1}}{{2x - 1}}.\)
B. \(\frac{{2x - 1}}{{{x^2} + 1}}.\)
C. \(\frac{{2x - 1}}{{{x^2} - 1}}.\)  
D. \(\frac{{{x^2} - 1}}{{2x + 1}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP