Câu hỏi:

20/01/2026 5 Lưu

PHẦN II. TỰ LUẬN

Cho biểu thức \[A = \frac{{x + 2}}{{x + 3}} - \frac{5}{{{x^2} + x - 6}} + \frac{1}{{2 - x}}.\]

a) Viết điều kiện xác định của biểu thức \(A.\)

b) Rút gọn biểu thức \(A,\) sau đó tính giá trị của biểu thức \(A\) khi \({x^2} - 9 = 0.\)

c) Tìm các số nguyên \[x\] để giá trị của biểu thức \(A\) là số nguyên dương lớn nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Ta có: \[{x^2} + x - 6 = {x^2} - 2x + 3x - 6 = x\left( {x - 2} \right) + 3\left( {x - 2} \right) = \left( {x - 2} \right)\left( {x + 3} \right).\]

Khi đó, điều kiện xác định của biểu thức \(A\) là \(\left\{ \begin{array}{l}x + 3 \ne 0\\{x^2} + x - 6 \ne 0\\2 - x \ne 0\end{array} \right.,\) hay \(\left\{ \begin{array}{l}x \ne  - 3\\\left( {x - 2} \right)\left( {x + 3} \right) \ne 0\\x \ne 2\end{array} \right.,\) tức là \(x \ne  - 3\) và \(x \ne 2.\)

Vậy biểu thức \(A\) xác định khi \(x \ne  - 3\) và \(x \ne 2.\)

b) Với \(x \ne  - 3\) và \(x \ne 2,\) ta có:

\[A = \frac{{x + 2}}{{x + 3}} - \frac{5}{{{x^2} + x - 6}} + \frac{1}{{2 - x}}\]\[ = \frac{{x + 2}}{{x + 3}} - \frac{5}{{\left( {x + 3} \right)\left( {x - 2} \right)}} - \frac{1}{{x - 2}}\]

\[ = \frac{{\left( {x + 2} \right)\left( {x - 2} \right) - 5 - 1\left( {x + 3} \right)}}{{\left( {x + 3} \right)\left( {x - 2} \right)}}\]\[ = \frac{{{x^2} - 4 - 5 - x - 3}}{{\left( {x + 3} \right)\left( {x - 2} \right)}}\]

\[ = \frac{{{x^2} - x - 12}}{{\left( {x + 3} \right)\left( {x - 2} \right)}} = \frac{{\left( {x - 4} \right)\left( {x + 3} \right)}}{{\left( {x + 3} \right)\left( {x - 2} \right)}} = \frac{{x - 4}}{{x - 2}}.\]

Vậy \(x \ne  - 3\) và \(x \ne 2,\) thì \[A = \frac{{x - 4}}{{x - 2}}.\]

Ta có: \[{x^2} - 9 = 0\]

\[\left( {x - 3} \right)\left( {x + 3} \right) = 0\]

\[x = 3\] (thoả mãn điều kiện) hoặc \[x =  - 3\] (không thỏa mãn điều kiện)

Thay \[x = 3\] vào biểu thức \[A = \frac{{x - 4}}{{x - 2}},\] ta được: \[A = \frac{{3 - 4}}{{3 - 2}} = \frac{{ - 1}}{1} =  - 1.\]

Vậy \[A =  - 1\] khi \[{x^2} - 9 = 0.\]

c) Với \(x \ne  - 3\) và \(x \ne 2,\) ta có: \[A = \frac{{x - 4}}{{x - 2}} = \frac{{x - 2 - 2}}{{x - 2}} = 1 - \frac{2}{{x - 2}}.\]

Với \(x\) là số nguyên, để \[A\] cũng có giá trị nguyên thì \[x - 2\] là ước của \(2.\)

Mà Ư\(\left( 2 \right) = \left\{ { - 1;\,\,1;\,\, - 2;\,\,2} \right\}.\)

Ta có bảng sau:

\[x - 2\]

\[ - 1\]

\[1\]

\[ - 2\]

\[2\]

\[x\]

\[1\]

(thoả mãn)

\[3\]

(thoả mãn)

\[0\]

(thoả mãn)

\[4\]

(thoả mãn)

\[A = 1 - \frac{2}{{x - 2}}\]

\[A = 1 - \frac{2}{{ - 1}} = 3\]

\[A = 1 - \frac{2}{1} =  - 1\]

\[A = 1 - \frac{2}{{ - 2}} = 2\]

\[A = 1 - \frac{2}{2} = 0\]

Theo bài, \[A\] có giá trị là số nguyên dương lớn nhất nên \(A = 3.\)

Vậy \(x = 1\) thì \[A\] đạt giá trị nguyên dương lớn nhất là \(A = 3.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

 Với \(a \ne b \ne c \ne 0,\) từ \(\frac{a}{{b - c}} + \frac{b}{{c - a}} + \frac{c}{{a - b}} = 0,\) suy ra:

\(\frac{a}{{b - c}} = \frac{b}{{a - c}} + \frac{c}{{b - a}} = \frac{{b\left( {b - a} \right)}}{{\left( {a - c} \right)\left( {b - a} \right)}} + \frac{{c\left( {a - c} \right)}}{{\left( {a - c} \right)\left( {b - a} \right)}} = \frac{{{b^2} - ab + ac - {c^2}}}{{\left( {a - c} \right)\left( {b - a} \right)}}.\)

Nhân hai vế với \(\frac{1}{{b - c}}\) ta được:

\(\frac{a}{{{{\left( {b - c} \right)}^2}}} = \frac{{{b^2} - ab + ac - {c^2}}}{{\left( {a - c} \right)\left( {b - a} \right)\left( {b - c} \right)}} = \frac{{{b^2} - ab + ac - {c^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}.\)

Tương tư, ta có: \(\frac{b}{{{{\left( {c - a} \right)}^2}}} = \frac{{{c^2} - bc + ab - {a^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}};\,\,\frac{c}{{{{\left( {a - b} \right)}^2}}} = \frac{{{a^2} - ca + bc - {b^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}.\)

Cộng vế theo vế ba đẳng thức trên ta được:

\(\frac{a}{{{{\left( {b - c} \right)}^2}}} + \frac{b}{{{{\left( {c - a} \right)}^2}}} + \frac{c}{{{{\left( {a - b} \right)}^2}}}\)

\( = \frac{{{b^2} - ab + ac - {c^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{{c^2} - bc + ab - {a^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{{a^2} - ca + bc - {b^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\)

\( = \frac{0}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} = 0.\)

Vậy \(\frac{a}{{{{\left( {b - c} \right)}^2}}} + \frac{b}{{{{\left( {c - a} \right)}^2}}} + \frac{c}{{{{\left( {a - b} \right)}^2}}} = 0.\)

Câu 2

Giải các phương trình sau:

a) \[x - 3\left( {2 - x} \right) = 2x - 4.\]   b) \[\frac{1}{3}\left( {x - 1} \right) + 4 = \frac{1}{2}\left( {x + 5} \right).\]

Lời giải

Hướng dẫn giải

a) \[x - 3\left( {2 - x} \right) = 2x - 4\]

\[x - 6 + 3x = 2x - 4\]

\[x + 3x - 2x = 6 - 4\]

\[2x = 2\]

\[x = 1\]

Vậy phương trình đã cho có nghiệm \(x = 1.\)

b) \[\frac{1}{3}\left( {x - 1} \right) + 4 = \frac{1}{2}\left( {x + 5} \right)\]

\[2\left( {x - 1} \right) + 24 = 3\left( {x + 5} \right)\]

\[2x - 2 + 24 = 3x + 15\]

\(2x - 3x = 15 + 2 - 24\)

\[ - x =  - 7\]

\[x = 7\]

Vậy phương trình đã cho có nghiệm \(x = 7.\)

Câu 3

Giải bài toán sau bằng cách lập phương trình bậc nhất một ẩn:

Một tàu hỏa từ Hà Nội đi TP Hồ Chí Minh. Sau 1 giờ 48 phút, một tàu hỏa khác khởi hành từ Nam Định cũng đi TP Hồ Chí Minh với vận tốc nhỏ hơn vận tốc của tàu thứ nhất 5 km/h. Hai tàu gặp nhau tại một nhà ga sau 4 giờ 48 phút kể từ khi tàu thứ nhất khởi hành. Tính vận tốc của mỗi tàu, biết rằng ga Nam Định nằm trên đường từ Hà Nội đi TP Hồ Chí Minh và cách ga Hà Nội 87 km.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[A = {x^2} + 4x.\]  
B. \[A = {x^2}--4x.\] 
C. \[A = {x^2} + 4.\] 
D. \[A = {x^2} + 16x.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(2{x^3}{y^3}\left( {y - 1} \right).\)          
B. \(2{x^3}{y^3}{\left( {y - 1} \right)^2}.\)                    
C. \({x^3}{y^3}{\left( {y - 1} \right)^2}.\)     
D. \(2{x^2}{y^3}{\left( {y - 1} \right)^2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{1}{2}.\) 
B. \(\frac{1}{{2y}}.\)
C. \(\frac{{2x}}{{{y^2}}}.\)
D. \(\frac{{2{x^2}}}{{{y^2}}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(2x - {2^2} = 0.\) 
B. \({x^2} = 1.\)  
C. \(x - y = 0.\)  
D. \(1 - \frac{1}{x} = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP