PHẦN II. TỰ LUẬN
Cho biểu thức \[A = \frac{{x + 2}}{{x + 3}} - \frac{5}{{{x^2} + x - 6}} + \frac{1}{{2 - x}}.\]
a) Viết điều kiện xác định của biểu thức \(A.\)
b) Rút gọn biểu thức \(A,\) sau đó tính giá trị của biểu thức \(A\) khi \({x^2} - 9 = 0.\)
c) Tìm các số nguyên \[x\] để giá trị của biểu thức \(A\) là số nguyên dương lớn nhất.
Cho biểu thức \[A = \frac{{x + 2}}{{x + 3}} - \frac{5}{{{x^2} + x - 6}} + \frac{1}{{2 - x}}.\]
a) Viết điều kiện xác định của biểu thức \(A.\)
b) Rút gọn biểu thức \(A,\) sau đó tính giá trị của biểu thức \(A\) khi \({x^2} - 9 = 0.\)
c) Tìm các số nguyên \[x\] để giá trị của biểu thức \(A\) là số nguyên dương lớn nhất.
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Ta có: \[{x^2} + x - 6 = {x^2} - 2x + 3x - 6 = x\left( {x - 2} \right) + 3\left( {x - 2} \right) = \left( {x - 2} \right)\left( {x + 3} \right).\]
Khi đó, điều kiện xác định của biểu thức \(A\) là \(\left\{ \begin{array}{l}x + 3 \ne 0\\{x^2} + x - 6 \ne 0\\2 - x \ne 0\end{array} \right.,\) hay \(\left\{ \begin{array}{l}x \ne - 3\\\left( {x - 2} \right)\left( {x + 3} \right) \ne 0\\x \ne 2\end{array} \right.,\) tức là \(x \ne - 3\) và \(x \ne 2.\)
Vậy biểu thức \(A\) xác định khi \(x \ne - 3\) và \(x \ne 2.\)
b) Với \(x \ne - 3\) và \(x \ne 2,\) ta có:
\[A = \frac{{x + 2}}{{x + 3}} - \frac{5}{{{x^2} + x - 6}} + \frac{1}{{2 - x}}\]\[ = \frac{{x + 2}}{{x + 3}} - \frac{5}{{\left( {x + 3} \right)\left( {x - 2} \right)}} - \frac{1}{{x - 2}}\]
\[ = \frac{{\left( {x + 2} \right)\left( {x - 2} \right) - 5 - 1\left( {x + 3} \right)}}{{\left( {x + 3} \right)\left( {x - 2} \right)}}\]\[ = \frac{{{x^2} - 4 - 5 - x - 3}}{{\left( {x + 3} \right)\left( {x - 2} \right)}}\]
\[ = \frac{{{x^2} - x - 12}}{{\left( {x + 3} \right)\left( {x - 2} \right)}} = \frac{{\left( {x - 4} \right)\left( {x + 3} \right)}}{{\left( {x + 3} \right)\left( {x - 2} \right)}} = \frac{{x - 4}}{{x - 2}}.\]
Vậy \(x \ne - 3\) và \(x \ne 2,\) thì \[A = \frac{{x - 4}}{{x - 2}}.\]
Ta có: \[{x^2} - 9 = 0\]
\[\left( {x - 3} \right)\left( {x + 3} \right) = 0\]
\[x = 3\] (thoả mãn điều kiện) hoặc \[x = - 3\] (không thỏa mãn điều kiện)
Thay \[x = 3\] vào biểu thức \[A = \frac{{x - 4}}{{x - 2}},\] ta được: \[A = \frac{{3 - 4}}{{3 - 2}} = \frac{{ - 1}}{1} = - 1.\]
Vậy \[A = - 1\] khi \[{x^2} - 9 = 0.\]
c) Với \(x \ne - 3\) và \(x \ne 2,\) ta có: \[A = \frac{{x - 4}}{{x - 2}} = \frac{{x - 2 - 2}}{{x - 2}} = 1 - \frac{2}{{x - 2}}.\]
Với \(x\) là số nguyên, để \[A\] cũng có giá trị nguyên thì \[x - 2\] là ước của \(2.\)
Mà Ư\(\left( 2 \right) = \left\{ { - 1;\,\,1;\,\, - 2;\,\,2} \right\}.\)
Ta có bảng sau:
|
\[x - 2\] |
\[ - 1\] |
\[1\] |
\[ - 2\] |
\[2\] |
|
\[x\] |
\[1\] (thoả mãn) |
\[3\] (thoả mãn) |
\[0\] (thoả mãn) |
\[4\] (thoả mãn) |
|
\[A = 1 - \frac{2}{{x - 2}}\] |
\[A = 1 - \frac{2}{{ - 1}} = 3\] |
\[A = 1 - \frac{2}{1} = - 1\] |
\[A = 1 - \frac{2}{{ - 2}} = 2\] |
\[A = 1 - \frac{2}{2} = 0\] |
Theo bài, \[A\] có giá trị là số nguyên dương lớn nhất nên \(A = 3.\)
Vậy \(x = 1\) thì \[A\] đạt giá trị nguyên dương lớn nhất là \(A = 3.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Với \(a \ne b \ne c \ne 0,\) từ \(\frac{a}{{b - c}} + \frac{b}{{c - a}} + \frac{c}{{a - b}} = 0,\) suy ra:
\(\frac{a}{{b - c}} = \frac{b}{{a - c}} + \frac{c}{{b - a}} = \frac{{b\left( {b - a} \right)}}{{\left( {a - c} \right)\left( {b - a} \right)}} + \frac{{c\left( {a - c} \right)}}{{\left( {a - c} \right)\left( {b - a} \right)}} = \frac{{{b^2} - ab + ac - {c^2}}}{{\left( {a - c} \right)\left( {b - a} \right)}}.\)
Nhân hai vế với \(\frac{1}{{b - c}}\) ta được:
\(\frac{a}{{{{\left( {b - c} \right)}^2}}} = \frac{{{b^2} - ab + ac - {c^2}}}{{\left( {a - c} \right)\left( {b - a} \right)\left( {b - c} \right)}} = \frac{{{b^2} - ab + ac - {c^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}.\)
Tương tư, ta có: \(\frac{b}{{{{\left( {c - a} \right)}^2}}} = \frac{{{c^2} - bc + ab - {a^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}};\,\,\frac{c}{{{{\left( {a - b} \right)}^2}}} = \frac{{{a^2} - ca + bc - {b^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}.\)
Cộng vế theo vế ba đẳng thức trên ta được:
\(\frac{a}{{{{\left( {b - c} \right)}^2}}} + \frac{b}{{{{\left( {c - a} \right)}^2}}} + \frac{c}{{{{\left( {a - b} \right)}^2}}}\)
\( = \frac{{{b^2} - ab + ac - {c^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{{c^2} - bc + ab - {a^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{{a^2} - ca + bc - {b^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\)
\( = \frac{0}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} = 0.\)
Vậy \(\frac{a}{{{{\left( {b - c} \right)}^2}}} + \frac{b}{{{{\left( {c - a} \right)}^2}}} + \frac{c}{{{{\left( {a - b} \right)}^2}}} = 0.\)
Lời giải
a) \[x - 3\left( {2 - x} \right) = 2x - 4\]
\[x - 6 + 3x = 2x - 4\]
\[x + 3x - 2x = 6 - 4\]
\[2x = 2\]
\[x = 1\]
Vậy phương trình đã cho có nghiệm \(x = 1.\)b) \[\frac{1}{3}\left( {x - 1} \right) + 4 = \frac{1}{2}\left( {x + 5} \right)\]
\[2\left( {x - 1} \right) + 24 = 3\left( {x + 5} \right)\]
\[2x - 2 + 24 = 3x + 15\]
\(2x - 3x = 15 + 2 - 24\)
\[ - x = - 7\]
\[x = 7\]
Vậy phương trình đã cho có nghiệm \(x = 7.\)Câu 3
Giải bài toán sau bằng cách lập phương trình bậc nhất một ẩn:
Một tàu hỏa từ Hà Nội đi TP Hồ Chí Minh. Sau 1 giờ 48 phút, một tàu hỏa khác khởi hành từ Nam Định cũng đi TP Hồ Chí Minh với vận tốc nhỏ hơn vận tốc của tàu thứ nhất 5 km/h. Hai tàu gặp nhau tại một nhà ga sau 4 giờ 48 phút kể từ khi tàu thứ nhất khởi hành. Tính vận tốc của mỗi tàu, biết rằng ga Nam Định nằm trên đường từ Hà Nội đi TP Hồ Chí Minh và cách ga Hà Nội 87 km.
Giải bài toán sau bằng cách lập phương trình bậc nhất một ẩn:
Một tàu hỏa từ Hà Nội đi TP Hồ Chí Minh. Sau 1 giờ 48 phút, một tàu hỏa khác khởi hành từ Nam Định cũng đi TP Hồ Chí Minh với vận tốc nhỏ hơn vận tốc của tàu thứ nhất 5 km/h. Hai tàu gặp nhau tại một nhà ga sau 4 giờ 48 phút kể từ khi tàu thứ nhất khởi hành. Tính vận tốc của mỗi tàu, biết rằng ga Nam Định nằm trên đường từ Hà Nội đi TP Hồ Chí Minh và cách ga Hà Nội 87 km.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.