Cho đường thẳng \(y = ax + b.\) Với giá trị \(a\) thỏa mãn điều kiện nào sau đây thì góc tạo bởi đường thẳng đó với trục \(Ox\) là góc nhọn?
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 8 Chân trời sáng tạo có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Khi \(a > 0\) thì góc tạo bởi đường thẳng \(y = ax + b\) và trục \(Ox\) là góc nhọn.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Công thức biểu thị số tiền \[y\] (đồng) mà nhà bạn Mai phải trả khi sử dụng \[x\] (m3) trong tháng 10/2023 với \[x > 30\] là:
\[y{\rm{ }} = 7\,\,500 \cdot 10 + 8\,\,800 \cdot 10 + 12\,\,000 \cdot 10 + 24\,\,000\left( {x - 30} \right)\]
\[ = 75{\rm{ }}000 + 88{\rm{ }}000 + 120{\rm{ }}000 + 24{\rm{ }}000x--720{\rm{ }}000\]
\[ = 24\,\,000x - 437\,\,000\] (đồng).
Vậy \[y = 24\,\,000x - 437\,\,000\] (đồng).
b) Hàm số \[y = 24\,\,000x - 437\,\,000\] là hàm số bậc nhất của \[x\] vì mỗi giá trị của \[x\] chỉ xác định đúng 1 giá trị của \[y.\]
c) Do nhà bạn Lan đã phải trả \[427{\rm{ }}000\] đồng cho tiền nước tháng 11/2023 nên ta có:
\[24\,\,000x - 437\,\,000 = 427\,\,000\]
\[24\,\,000x = 864\,\,000\]
Suy ra \[x = 36\] (m3).
Vậy trong tháng 11/2023, nhà bạn Lan đã dùng 36 m3 nước.
Lời giải
1)

a) Xét \(\Delta ABC\) có \(AB \bot AC;\,\,IN \bot AC\) nên \(AB\,{\rm{//}}\,IN.\)
Mà \(I\) là trung điểm của \(BC\) nên \(IN\) là đường trung bình của tam giác, do đó \(N\) là trung điểm của \(AC.\)
Xét tứ giác \(ADCI\) có: \(N\) là trung điểm của \(ID,\,\,AC\) nên \(ADCI\) là hình bình hành.b)

Kẻ \(IH\,{\rm{//}}\,BK\,\,\left( {H \in CD} \right),\) mà \(I\) là trung điểm của \(BC,\) nên \(IH\) là đường trung bình của \(\Delta BKC.\) Do đó \(H\) là trung điểm của \(KC\) hay \(KH = HC\,\,\left( 1 \right)\)
Xét \[\Delta DIH\] có \(N\) là trung điểm của \[DI\] và \[NK\,{\rm{//}}\,IH\] (do \[BK\,{\rm{//}}\,IH)\] nên \(NK\) là đường trung bình của \[\Delta DIH,\] suy ra \(K\)là trung điểm của \(DH\) hay \(DK = KH\,\,\left( 2 \right)\)Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(DK = KH = HC.\) Do đó \(\frac{{DK}}{{DC}} = \frac{1}{3}.\)
2) a) Trong \(\Delta ABD\) có: \[AM\] là phân giác của góc \(\widehat {BAD}\) nên \(\frac{{AB}}{{AD}} = \frac{{MB}}{{MD}}\) (tính chất đường phân giác trong tam giác).
Tương tự: trong \(\Delta ADC\) có \[DN\] là phân giác góc \(\widehat {ADC}\) nên \(\frac{{DC}}{{DA}} = \frac{{NC}}{{NA}}.\)
Mà \[AB = DC\] (do \[ABCD\] là hình bình hành) suy ra \(\frac{{AB}}{{AD}} = \frac{{MB}}{{MD}} = \frac{{NC}}{{NA}}.\)
b) Theo câu a, \(\frac{{MB}}{{MD}} = \frac{{NC}}{{NA}}\) suy ra \(\frac{{MB}}{{MD}} + 1 = \frac{{NC}}{{NA}} + 1\) hay \(\frac{{MB + MD}}{{MD}} = \frac{{NC + NA}}{{NA}}\)
Suy ra \(\frac{{BD}}{{MD}} = \frac{{AC}}{{NA}}\) \[\left( 1 \right)\]
Mà \[ABCD\] là hình bình hành nên hai đường chéo \[AC\] và \[BD\] cắt nhau tại trung điểm \[O\] của mỗi đường, suy ra \[BD = 2DO,\] \[AC = 2AO\] \[\left( 2 \right)\]
Từ (1) và (2) suy ra \[\frac{{2DO}}{{DM}} = \frac{{2AO}}{{AN}}\] hay \(\frac{{DO}}{{DM}} = \frac{{AO}}{{AN}}\)
Xét \(\Delta OAD\) có \(\frac{{DO}}{{DM}} = \frac{{AO}}{{AN}}\) nên \[MN\,{\rm{//}}\,AD\] (định lí Thalès đảo).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.