Câu hỏi:

23/01/2026 7 Lưu

Cho \[\Delta ABC\] vuông tại \[A.\] Đường trung trực của đoạn thẳng \[AC\] cắt \[AC\] tại \[H,\] cắt \[BC\] tại \[D.\] Nối \[A\]\[D\].

Cho \[\Delta ABC\] vuông tại \[A.\] Đường trung trực của đoạn thẳng AC (ảnh 1)
Khi đó:

a) \[\Delta ADC\] cân tại \[D\].

Đúng
Sai

b) \[\Delta ADB\] cân tại \[B.\]

Đúng
Sai

c) \[DA = DB\].

Đúng
Sai
d) \[D\] là trung điểm của \[BC.\]
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

Vì đường trung trực của đoạn thẳng \[AC\] cắt \[AC\] tại \[H,\] cắt \[BC\] tại \[D\] nên ta có \[DC = DA\] (tính chất đường trung trực).

Suy ra \[\Delta ADC\] cân tại \[D\].

b) Sai.

\[\Delta ADC\] cân tại \[D\] nên \[\widehat C = \widehat {{A_1}}\].

Ta có: \[\widehat {ABD} = 90^\circ - \widehat C\]\[\widehat {{A_2}} = 90^\circ - \widehat {{A_1}}\].

Suy ra \[\widehat {ABD} = \widehat {{A_2}}\].

Vậy \[\Delta ADB\] cân tại \[D\].

c) Đúng.

\[\Delta ADB\] cân tại \[D\]nên \[AD = BD\].

d) Đúng.

\[AD = BD\] (cmt) và \[DC = DA\] (\[\Delta ADC\]cân tại \[D\]) nên \[DC = DB\].

Vậy \[D\] là trung điểm của \[BC.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác \(ABC\) cân tại \(A\) có góc A =100 độ (ảnh 1)

Ta có tam giác \(ABC\) cân tại \(A\) nên \(\widehat B = \widehat C = \frac{{180^\circ - \widehat A}}{2} = 40^\circ \).

Lại có tam giác \(ABD\)\(BA = BD\) nên \(\Delta ABD\) cân tại \(B\). Do đó, \(\widehat {BAD} = \widehat {BDA} = \frac{{180^\circ - 40^\circ }}{2} = 70^\circ \).

Theo đề, \(BD = BA,\)\(CE = CA.\)\[AB = AC\](\(\Delta ABC\) cân tại \(A\)) suy ra \(AB = EC\).

Ta có: \(BD = BE + ED\), \(EC = ED + DC\) nên \(BE = DC\).

Xét \(\Delta ABE\)\(\Delta ACD\) có:

\(AB = AC\) (gt)

\(\widehat {ABC} = \widehat {ACB} = 40^\circ \)

\(BE = DC\) (cmt)

Suy ra \(\Delta ABE = \Delta ACD\) (c.g.c)

Do đó, \(\widehat {BAE} = \widehat {DAC}\) (hai góc tương ứng)

Ta có: \(\widehat {BAD} + \widehat {DAC} = 100^\circ \) nên \(\widehat {DAC} = 100^\circ - \widehat {BAD} = 100^\circ - 70^\circ = 30^\circ \).

Suy ra \(\widehat {BAE} = 30^\circ \) do đó, \(\widehat {EAD} = \widehat {BAD} - \widehat {BAE} = 70^\circ - 30^\circ = 40^\circ \).

Lời giải

Xét \[\Delta ABC\]\[CB = AB\] nên \[\Delta ABC\] cân tại \[B\].

Do đó, \[\widehat {BAC} = \widehat {BCA} = \frac{{180^\circ - CBA}}{2} = \frac{{180^\circ - 50^\circ }}{2} = 65^\circ \].

Xét \[\Delta CBD\]\[CD = BD\] nên \[\Delta CBD\] cân tại \[D\].

Suy ra \[\widehat {CBD} = \widehat {BCD} = 65^\circ \].

Do đó, \[\widehat {ABD} = \widehat {BCD} - \widehat {CBA} = 65^\circ - 50^\circ = 15^\circ \].

Câu 3

A. \(AB = AC.\)          
B. \(AB = BC.\)           
C. \(\widehat B = \widehat {C.}\)         
D. \(\widehat B = \frac{{180^\circ - \widehat A}}{2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(AB = BC.\)                      
B. \(AB = AC.\)          
C. \(\widehat A = \widehat B.\)     
D. \(\widehat C = \widehat A.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\Delta ABC\) là tam giác đều.                   

B. \(\Delta ABC\) cân tại \(A.\)        

C. \(\Delta ABC\) cân tại \(B.\)                     
D. \(\Delta ABC\) cân tại \(C.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. là điểm nằm bên trong tam giác.                  

B. là điểm nằm bên ngoài tam giác.

C. trùng với điểm \(A\).         
D. là trung điểm của cạnh huyền \(BC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP