PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng (Đ) hoặc sai (S)
Cho hàm số bậc bốn \[y = f\left( x \right)\]. Hàm số \[y = f'\left( x \right)\] có đồ thị như hình vẽ

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng (Đ) hoặc sai (S)
Cho hàm số bậc bốn \[y = f\left( x \right)\]. Hàm số \[y = f'\left( x \right)\] có đồ thị như hình vẽ

Câu hỏi trong đề: Đề thi thử Toán Tốt nghiệp Sở Ninh Bình lần 1 có đáp án !!
Quảng cáo
Trả lời:
a) Từ đồ thị ta có trên khoảng \[\left( { - \infty ; - 2} \right)\] đồ thị hàm số \[f'\left( x \right)\] nằm phía trên trục \[Ox\] nên \[f'\left( x \right) > 0 \Rightarrow f\left( x \right)\] đồng biến trên \[\left( { - \infty ; - 2} \right)\]. Suy ra mện đề a) SAI
b) Từ đồ thị ta nhận thấy \[f'\left( x \right)\] đổi dấu 3 lần lên hàm số \[f\left( x \right)\] có ba điểm cực trị. Suy ra mệnh đề b) ĐÚNG.
c) Từ đồ thị ta có trên ta có bảng biến thiên

Từ BBT suy ra trên \[\left[ { - 2;2} \right]\] hàm số đạt giá trị nhỏ nhất bằng \[f\left( 0 \right)\]. Suy ra mệnh đề c) ĐÚNG
d) Từ đồ thị ta có bảng biến thiên của hàm số \[f\left( x \right)\]

Vì \[f\left( x \right) > 0\] nên từ BBT suy ra đồ thị hàm số \[y = f\left( x \right)\] cắt trục \[Ox\] tối đa tại 2 điểm suy ra phương trình \[f\left( x \right) = 0\] có tối đa 2 nghiệm. Suy ra mệnh đề c) SAI
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta trải phẳng 3 mặt phẳng \(\left( {ADD'A'} \right)\), \(\left( {A'B'C'D'} \right)\) và \(\left( {CBB'C'} \right)\) như hình vẽ bên dưới.
Khi đó muốn nối dây điện từ bảng điểu khiển men theo các bức tường (không mắc lên mái) đến 2 bóng điện trên ngắn nhất thì độ dài của \(M{D_1} + M{D_2}\) ngắn nhất như hình vẽ bên dưới.

Theo các thông số đề bài cho ta có thể mô hình hóa bài toán bằng hình vẽ sau

Lời giải
Đáp án: 0,83.
Gọi hàm số biểu diễn quỹ đạo chuyển động của thuyền là \(y = f(x) = \frac{{ax + b}}{{cx + d}}\).
Theo đề bài, cung đường \(AB\) là một phần của đồ thị hàm số này.
Điểm \(B( - 1;0)\) nằm trên đồ thị, nên: \(0 = \frac{{a( - 1) + b}}{{c( - 1) + d}} \Leftrightarrow - a + b = 0 \Leftrightarrow b = a\quad (1)\)
Điểm \(A\left( {4;\frac{5}{3}} \right)\) nằm trên đồ thị, nên: \(\frac{5}{3} = \frac{{a(4) + b}}{{c(4) + d}}\quad (2)\)
Từ \((1)\), thay \(b = a\) vào \((2)\):\(\frac{5}{3} = \frac{{4a + a}}{{4c + d}} = \frac{{5a}}{{4c + d}}\)\( \Leftrightarrow 5(4c + d) = 15a\)\( \Leftrightarrow 4c + d = 3a\quad (3)\)
Quan sát đồ thị, ta thấy đường cong đi qua điểm \((0;1)\) (điểm giao với trục \(Oy\)). Giả sử điểm \((0;1)\) nằm trên đồ thị, khi đó: \(1 = \frac{{a(0) + b}}{{c(0) + d}} \Leftrightarrow 1 = \frac{b}{d} \Leftrightarrow b = d\quad (4)\)
Từ \((1)\) và \((4)\), ta có \(a = b = d\).
Thay \(d = a\) vào \((3)\): \(4c + a = 3a\)\( \Leftrightarrow 4c = 2a\)\( \Leftrightarrow a = 2c\quad (5)\)
Để đơn giản, ta chọn \(c = 1\), từ \((5)\) suy ra \(a = 2\).
Khi đó \(b = a = 2\) và \(d = a = 2\). Vậy hàm số có dạng \(y = \frac{{2x + 2}}{{x + 2}}\).
Kiểm tra lại với các điểm đã cho:
Với \(B( - 1;0)\): \(y = \frac{{2( - 1) + 2}}{{ - 1 + 2}} = \frac{0}{1} = 0\). (Thỏa mãn)
Với \(A\left( {4;\frac{5}{3}} \right)\): \(y = \frac{{2(4) + 2}}{{4 + 2}} = \frac{{8 + 2}}{6} = \frac{{10}}{6} = \frac{5}{3}\). (Thỏa mãn)
Gọi \(M(x;y)\) là một điểm trên cung đường \(AB\). Khoảng cách từ \(M\) đến gốc tọa độ \(O(0;0)\) là \(OM = \sqrt {{{(x - 0)}^2} + {{(y - 0)}^2}} = \sqrt {{x^2} + {y^2}} \).
Để \(OM\) ngắn nhất, ta cần tìm giá trị nhỏ nhất của \(O{M^2} = S(x) = {x^2} + {y^2}\) với \(x \in [ - 1;4]\).
Thay \(y = \frac{{2x + 2}}{{x + 2}}\) vào \(S(x)\)ta được: \(S(x) = {x^2} + {\left( {\frac{{2x + 2}}{{x + 2}}} \right)^2}\).
Ta có: \(S'(x) = 2x + 2\left( {\frac{{2x + 2}}{{x + 2}}} \right) \cdot \left( {\frac{2}{{{{(x + 2)}^2}}}} \right) = 2x + \frac{{4(2x + 2)}}{{{{(x + 2)}^3}}} = 2x + \frac{{8x + 8}}{{{{(x + 2)}^3}}}\)
\(S'(x) = 0\)\( \Leftrightarrow 2x + \frac{{8x + 8}}{{{{(x + 2)}^3}}} = 0\)\( \Leftrightarrow {x^4} + 6{x^3} + 12{x^2} + 12x + 4 = 0\).
Trên đoạn \([ - 1;4]\), ta tìm được nghiệm thực của phương trình \({x^4} + 6{x^3} + 12{x^2} + 12x + 4 = 0\) là \({x_0} \approx - 0,5826\).
Tại \(x = - 1\) (điểm \(B\)): \(O{M^2} = {( - 1)^2} + {0^2} = 1\) \( \Rightarrow OM = 1\).
Tại \(x = 4\) (điểm \(A\)): \(O{M^2} = {4^2} + {\left( {\frac{5}{3}} \right)^2} = 16 + \frac{{25}}{9} = \frac{{144 + 25}}{9} = \frac{{169}}{9}\)\( \Rightarrow OM = \sqrt {\frac{{169}}{9}} = \frac{{13}}{3} \approx 4,333\).
Tại \({x_0} \approx - 0.5826\), ta có: \({y_0} = \frac{{2{x_0} + 2}}{{{x_0} + 2}} = \frac{{2 \cdot \left( { - 0,5826} \right) + 2}}{{ - 0,5826 + 2}} = \frac{{ - 1,1652 + 2}}{{1,4174}} = \frac{{0,8348}}{{1,4174}} \approx 0,58896\).
\(OM = \sqrt {x_0^2 + y_0^2} = \sqrt {{{\left( { - 0,5826} \right)}^2} + {{\left( {0,58896} \right)}^2}} \)
\(OM = \sqrt {0,33942076 + 0,34687392} = \sqrt {0,68629468} \approx 0,82842\).
So sánh các giá trị \(OM\) tìm được giá trị nhỏ nhất là \(0,82842\).
Làm tròn kết quả đến hàng phần trăm, ta được \(0,83\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

