Một ngôi nhà hình lăng trụ đứng \(ABCD \cdot A'B'C'D'\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(B\). \(AB = AD = 4\,\,(\;{\rm{m}});BC = 3,5\,\,(\;{\rm{m}});BB' = 6\,\,(\;{\rm{m}})\) (xem hình vẽ). Ơ bức tường \(ADD'A'\) người ta lắp một bóng điện cách cạnh \(A'D'\) một khoảng bằng \(3(m)\) và cách mặt sàn một khoảng bằng \(3\,\,(m)\), còn ở bức tường \(BCC'B'\) người ta lắp một bóng điện cách cạnh \(B'C'\) một khoảng bằng \(3\,\,(\;{\rm{m}})\) và cách mặt sàn một khoảng bằng \(2,5\,\,(\;{\rm{m}})\). Một bảng điều khiển được đặt tại bức tường \(A'B'C'D'\) cách cạnh \(A'D'\) một khoảng bằng \(1(\;{\rm{m}})\) và cao \(1,5(\;{\rm{m}})\) so với mặt sàn. Người ta muốn nối dây điện từ bảng điểu khiển men theo các bức tường (không mắc lên mái) đến 2 bóng điện trên. Hỏi cần tối thiểu bao nhiêu mét dây điện? (làm tròn kết quả đến hàng phần muời).

Một ngôi nhà hình lăng trụ đứng \(ABCD \cdot A'B'C'D'\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(B\). \(AB = AD = 4\,\,(\;{\rm{m}});BC = 3,5\,\,(\;{\rm{m}});BB' = 6\,\,(\;{\rm{m}})\) (xem hình vẽ). Ơ bức tường \(ADD'A'\) người ta lắp một bóng điện cách cạnh \(A'D'\) một khoảng bằng \(3(m)\) và cách mặt sàn một khoảng bằng \(3\,\,(m)\), còn ở bức tường \(BCC'B'\) người ta lắp một bóng điện cách cạnh \(B'C'\) một khoảng bằng \(3\,\,(\;{\rm{m}})\) và cách mặt sàn một khoảng bằng \(2,5\,\,(\;{\rm{m}})\). Một bảng điều khiển được đặt tại bức tường \(A'B'C'D'\) cách cạnh \(A'D'\) một khoảng bằng \(1(\;{\rm{m}})\) và cao \(1,5(\;{\rm{m}})\) so với mặt sàn. Người ta muốn nối dây điện từ bảng điểu khiển men theo các bức tường (không mắc lên mái) đến 2 bóng điện trên. Hỏi cần tối thiểu bao nhiêu mét dây điện? (làm tròn kết quả đến hàng phần muời).

Câu hỏi trong đề: Đề thi thử Toán Tốt nghiệp Sở Ninh Bình lần 1 có đáp án !!
Quảng cáo
Trả lời:
Ta trải phẳng 3 mặt phẳng \(\left( {ADD'A'} \right)\), \(\left( {A'B'C'D'} \right)\) và \(\left( {CBB'C'} \right)\) như hình vẽ bên dưới.
Khi đó muốn nối dây điện từ bảng điểu khiển men theo các bức tường (không mắc lên mái) đến 2 bóng điện trên ngắn nhất thì độ dài của \(M{D_1} + M{D_2}\) ngắn nhất như hình vẽ bên dưới.

Theo các thông số đề bài cho ta có thể mô hình hóa bài toán bằng hình vẽ sau

Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 0,83.
Gọi hàm số biểu diễn quỹ đạo chuyển động của thuyền là \(y = f(x) = \frac{{ax + b}}{{cx + d}}\).
Theo đề bài, cung đường \(AB\) là một phần của đồ thị hàm số này.
Điểm \(B( - 1;0)\) nằm trên đồ thị, nên: \(0 = \frac{{a( - 1) + b}}{{c( - 1) + d}} \Leftrightarrow - a + b = 0 \Leftrightarrow b = a\quad (1)\)
Điểm \(A\left( {4;\frac{5}{3}} \right)\) nằm trên đồ thị, nên: \(\frac{5}{3} = \frac{{a(4) + b}}{{c(4) + d}}\quad (2)\)
Từ \((1)\), thay \(b = a\) vào \((2)\):\(\frac{5}{3} = \frac{{4a + a}}{{4c + d}} = \frac{{5a}}{{4c + d}}\)\( \Leftrightarrow 5(4c + d) = 15a\)\( \Leftrightarrow 4c + d = 3a\quad (3)\)
Quan sát đồ thị, ta thấy đường cong đi qua điểm \((0;1)\) (điểm giao với trục \(Oy\)). Giả sử điểm \((0;1)\) nằm trên đồ thị, khi đó: \(1 = \frac{{a(0) + b}}{{c(0) + d}} \Leftrightarrow 1 = \frac{b}{d} \Leftrightarrow b = d\quad (4)\)
Từ \((1)\) và \((4)\), ta có \(a = b = d\).
Thay \(d = a\) vào \((3)\): \(4c + a = 3a\)\( \Leftrightarrow 4c = 2a\)\( \Leftrightarrow a = 2c\quad (5)\)
Để đơn giản, ta chọn \(c = 1\), từ \((5)\) suy ra \(a = 2\).
Khi đó \(b = a = 2\) và \(d = a = 2\). Vậy hàm số có dạng \(y = \frac{{2x + 2}}{{x + 2}}\).
Kiểm tra lại với các điểm đã cho:
Với \(B( - 1;0)\): \(y = \frac{{2( - 1) + 2}}{{ - 1 + 2}} = \frac{0}{1} = 0\). (Thỏa mãn)
Với \(A\left( {4;\frac{5}{3}} \right)\): \(y = \frac{{2(4) + 2}}{{4 + 2}} = \frac{{8 + 2}}{6} = \frac{{10}}{6} = \frac{5}{3}\). (Thỏa mãn)
Gọi \(M(x;y)\) là một điểm trên cung đường \(AB\). Khoảng cách từ \(M\) đến gốc tọa độ \(O(0;0)\) là \(OM = \sqrt {{{(x - 0)}^2} + {{(y - 0)}^2}} = \sqrt {{x^2} + {y^2}} \).
Để \(OM\) ngắn nhất, ta cần tìm giá trị nhỏ nhất của \(O{M^2} = S(x) = {x^2} + {y^2}\) với \(x \in [ - 1;4]\).
Thay \(y = \frac{{2x + 2}}{{x + 2}}\) vào \(S(x)\)ta được: \(S(x) = {x^2} + {\left( {\frac{{2x + 2}}{{x + 2}}} \right)^2}\).
Ta có: \(S'(x) = 2x + 2\left( {\frac{{2x + 2}}{{x + 2}}} \right) \cdot \left( {\frac{2}{{{{(x + 2)}^2}}}} \right) = 2x + \frac{{4(2x + 2)}}{{{{(x + 2)}^3}}} = 2x + \frac{{8x + 8}}{{{{(x + 2)}^3}}}\)
\(S'(x) = 0\)\( \Leftrightarrow 2x + \frac{{8x + 8}}{{{{(x + 2)}^3}}} = 0\)\( \Leftrightarrow {x^4} + 6{x^3} + 12{x^2} + 12x + 4 = 0\).
Trên đoạn \([ - 1;4]\), ta tìm được nghiệm thực của phương trình \({x^4} + 6{x^3} + 12{x^2} + 12x + 4 = 0\) là \({x_0} \approx - 0,5826\).
Tại \(x = - 1\) (điểm \(B\)): \(O{M^2} = {( - 1)^2} + {0^2} = 1\) \( \Rightarrow OM = 1\).
Tại \(x = 4\) (điểm \(A\)): \(O{M^2} = {4^2} + {\left( {\frac{5}{3}} \right)^2} = 16 + \frac{{25}}{9} = \frac{{144 + 25}}{9} = \frac{{169}}{9}\)\( \Rightarrow OM = \sqrt {\frac{{169}}{9}} = \frac{{13}}{3} \approx 4,333\).
Tại \({x_0} \approx - 0.5826\), ta có: \({y_0} = \frac{{2{x_0} + 2}}{{{x_0} + 2}} = \frac{{2 \cdot \left( { - 0,5826} \right) + 2}}{{ - 0,5826 + 2}} = \frac{{ - 1,1652 + 2}}{{1,4174}} = \frac{{0,8348}}{{1,4174}} \approx 0,58896\).
\(OM = \sqrt {x_0^2 + y_0^2} = \sqrt {{{\left( { - 0,5826} \right)}^2} + {{\left( {0,58896} \right)}^2}} \)
\(OM = \sqrt {0,33942076 + 0,34687392} = \sqrt {0,68629468} \approx 0,82842\).
So sánh các giá trị \(OM\) tìm được giá trị nhỏ nhất là \(0,82842\).
Làm tròn kết quả đến hàng phần trăm, ta được \(0,83\).
Lời giải
Đáp án: \[ - 3\].
Tập xác định: \[D = \left( { - \infty ; - 3} \right) \cup \left( {0; + \infty } \right)\].
Ta có \[y' = \frac{{2x + 3}}{{\left( {{x^2} + 3x} \right).\ln 2}}\]; \[y' = 0 \Leftrightarrow x = - \frac{3}{2}\].
Bảng biến thiên:
![Hàm số \[y = {\log _2}\left( {{x^2} + 3x} \right)\] nghịch biến trên khoảng \[\left( { - \infty ;a} \right)\]. Giá trị lớn nhất của \[a\] là bao nhiêu? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/11-1769162455.png)
Dựa vào bảng biến thiên ta thấy giá trị lớn nhất của \[a\] là \[ - 3\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
