Phần I (4 điểm). Thí sinh trả lời từ câu 1 đến câu 16. Đối với mỗi câu, thí sinh chỉ chọn một phương án. Đối với mỗi câu trả lời đúng, thí sinh được 0,25 điểm.
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {x - 2} \right)\left( {x + 1} \right),\forall x \in \mathbb{R}\). Mệnh đề nào dưới đây đúng?
Phần I (4 điểm). Thí sinh trả lời từ câu 1 đến câu 16. Đối với mỗi câu, thí sinh chỉ chọn một phương án. Đối với mỗi câu trả lời đúng, thí sinh được 0,25 điểm.
Câu hỏi trong đề: Đề ôn thi ĐGNL ĐHSP Hà Nội môn Toán có đáp án !!
Quảng cáo
Trả lời:
Ta có \(f'\left( x \right) = \left( {x - 2} \right)\left( {x + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 1\end{array} \right..\)
Bảng xét dấu của \(f'\left( x \right)\) như sau:

Vậy hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right),\left( {2; + \infty } \right)\) và nghịch biến trên khoảng \[\left( { - 1;2} \right)\].
Chọn D.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[{4^{{x^2} - 3x + 2}} + {4^{2{x^2} + 6x + 5}} = {4^{3{x^2} + 3x + 7}} + 1\]
\[ \Leftrightarrow {4^{{x^2} - 3x + 2}} + {4^{2{x^2} + 6x + 5}} = {4^{{x^2} - 3x + 2}} \cdot {4^{2{x^2} + 6x + 5}} + 1\]
\[ \Leftrightarrow {4^{{x^2} - 3x + 2}} - 1 + {4^{2{x^2} + 6x + 5}} - {4^{{x^2} - 3x + 2}} \cdot {4^{2{x^2} + 6x + 5}} = 0\]
\( \Leftrightarrow \left( {{4^{{x^2} - 3x + 2}} - 1} \right)\left( {1 - {4^{2{x^2} + 6x + 5}}} \right) = 0\).
Trường hợp 1: \({4^{{x^2} - 3x + 2}} = 1 \Leftrightarrow {x^2} - 3x + 2 = 0 \Leftrightarrow x = 1\) hoặc \(x = 2\).
Trường hợp 2: \({4^{2{x^2} + 6x + 5}} = 1 \Leftrightarrow 2{x^2} + 6x + 5 = 0\), phương trình này vô nghiệm.
Vậy, phương trình cho có \(2\) nghiệm \(x = 1,\) \(x = 2\).
Lời giải

Xét đồ thị hàm số \(y = h\left( x \right) = - f\left( x \right)\) có đồ thị là đường nét đứt đoạn như hình vẽ trên.
Hoành độ giao điểm của đồ thị hàm số \(g\left( x \right)\) và \(h\left( x \right)\) là nghiệm của phương trình \[ - {x^2} + 8x - 12 = - x + 6\] \[ \Leftrightarrow {x^2} - 9x + 18 = 0 \Leftrightarrow x = 3\] hoặc \[x = 6\].
Thể tích của bình cổ là
\(V = \pi \int\limits_3^6 {\left[ {{{\left( { - {x^2} + 8x - 12} \right)}^2}} \right]{\rm{d}}x + \pi \int\limits_1^3 {{{\left( { - x + 6} \right)}^2}{\rm{d}}x - \pi \int\limits_1^2 {{{\left( {{x^2} - 8x + 12} \right)}^2}{\rm{d}}x} } } \)\( = \frac{{153}}{5}\pi + \frac{{98}}{3}\pi - \frac{{113}}{{15}}\pi = \frac{{836}}{{15}}\pi \).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
