Câu hỏi:

23/01/2026 52 Lưu

Trong một kì thi tốt nghiệp trung học phổ thông, một tỉnh X có 80% học sinh lựa chọn tổ hợp A00 (gồm các môn Toán, Vật lí, Hoá học). Biết rằng, nếu một học sinh chọn tổ hợp A00 thì xác suất để học sinh đó đỗ đại học là 0,6; còn nếu một học sinh không chọn tổ hợp A00 thì xác suất để học sinh đó đỗ đại học là 0,7. Chọn ngẫu nhiên một học sinh của tỉnh X đã tốt nghiệp trung học phổ thông trong kì thi trên. Biết rằng học sinh này đã đỗ đại học, tính xác suất để học sinh đó chọn tổ hợp A00.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

24/31

Gọi biến cố A: “Học sinh đó chọn tổ hợp A00” ;

biến cố B: “Học sinh đó đỗ đại học”.

Ta cần tính \[P\left( {A|B} \right)\].

Theo bài ra ta có: \(P\left( A \right) = 0,8;P\left( {\overline A } \right) = 1 - P\left( A \right) = 1 - 0,8 = 0,2\).

Ta có \(P\left( {B|A} \right)\) là xác suất để một học sinh đỗ đại học với điều kiện học sinh đó chọn tổ hợp A00 nên \(P\left( {B|A} \right) = 0,6\)\(P\left( {B|\overline A } \right)\) là xác suất để một học sinh đỗ đại học với điều kiện học sinh đó không chọn tổ hợp A00 nên \(P\left( {B|\overline A } \right) = 0,7\).

Áp dụng công thức Bayes ta được

\(P\left( {A|B} \right) = \frac{{P\left( A \right) \cdot P\left( {B|A} \right)}}{{P\left( A \right) \cdot P\left( {B|A} \right) + P\left( {\overline A } \right) \cdot P\left( {B|\overline A } \right)}} = \frac{{0,8 \cdot 0,6}}{{0,8 \cdot 0,6 + 0,2 \cdot 0,7}} = \frac{{24}}{{31}}\).

Trả lời: \(\frac{{24}}{{31}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[{4^{{x^2} - 3x + 2}} + {4^{2{x^2} + 6x + 5}} = {4^{3{x^2} + 3x + 7}} + 1\]

\[ \Leftrightarrow {4^{{x^2} - 3x + 2}} + {4^{2{x^2} + 6x + 5}} = {4^{{x^2} - 3x + 2}} \cdot {4^{2{x^2} + 6x + 5}} + 1\]

\[ \Leftrightarrow {4^{{x^2} - 3x + 2}} - 1 + {4^{2{x^2} + 6x + 5}} - {4^{{x^2} - 3x + 2}} \cdot {4^{2{x^2} + 6x + 5}} = 0\]

\( \Leftrightarrow \left( {{4^{{x^2} - 3x + 2}} - 1} \right)\left( {1 - {4^{2{x^2} + 6x + 5}}} \right) = 0\).

Trường hợp 1: \({4^{{x^2} - 3x + 2}} = 1 \Leftrightarrow {x^2} - 3x + 2 = 0 \Leftrightarrow x = 1\) hoặc \(x = 2\).

Trường hợp 2: \({4^{2{x^2} + 6x + 5}} = 1 \Leftrightarrow 2{x^2} + 6x + 5 = 0\), phương trình này vô nghiệm.

Vậy, phương trình cho có \(2\) nghiệm \(x = 1,\) \(x = 2\).

Câu 2

A. Hàm số đã cho đồng biến trên \(\left( { - 1; + \infty } \right)\).                  
B. Hàm số đã cho đồng biến trên \(\left( { - \infty ;2} \right)\).    
C. Hàm số đã cho nghịch biến trên \(\left( { - 2;1} \right)\).                     
D. Hàm số đã cho nghịch biến trên \[\left( { - 1;2} \right)\].

Lời giải

Ta có \(f'\left( x \right) = \left( {x - 2} \right)\left( {x + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 1\end{array} \right..\)

Bảng xét dấu của \(f'\left( x \right)\) như sau:

Cho hàm số \(y = f\left( x \right)\) có đạo (ảnh 1)

Vậy hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right),\left( {2; + \infty } \right)\) và nghịch biến trên khoảng \[\left( { - 1;2} \right)\].

Chọn D.

Câu 5

A. \(20\).                 
B. \(10\).                 
C. \(\frac{5}{2}\).           
D. \(\frac{5}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{108}}{{775}}\).                    
B. \(\frac{{108}}{{665}}\).                             
C. \(\frac{{116}}{{565}}\).                             
D. \(\frac{{109}}{{785}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP