(1 điểm). Một cái bình cổ có hình dạng như Hình a. Giả sử mô hình toán mô phỏng việc tạo thành cái bình cổ đó bằng cách xoay phần diện tích (gạch sọc) được giới hạn bởi đường cong \(f\left( x \right) = {x^2} - 8x + 12\) và \(g\left( x \right) = - x + 6\) quanh trục \(Ox\) như Hình b. Hãy tính thể tích của cái bình cổ đó.

(1 điểm). Một cái bình cổ có hình dạng như Hình a. Giả sử mô hình toán mô phỏng việc tạo thành cái bình cổ đó bằng cách xoay phần diện tích (gạch sọc) được giới hạn bởi đường cong \(f\left( x \right) = {x^2} - 8x + 12\) và \(g\left( x \right) = - x + 6\) quanh trục \(Ox\) như Hình b. Hãy tính thể tích của cái bình cổ đó.

Câu hỏi trong đề: Đề ôn thi ĐGNL ĐHSP Hà Nội môn Toán có đáp án !!
Quảng cáo
Trả lời:

Xét đồ thị hàm số \(y = h\left( x \right) = - f\left( x \right)\) có đồ thị là đường nét đứt đoạn như hình vẽ trên.
Hoành độ giao điểm của đồ thị hàm số \(g\left( x \right)\) và \(h\left( x \right)\) là nghiệm của phương trình \[ - {x^2} + 8x - 12 = - x + 6\] \[ \Leftrightarrow {x^2} - 9x + 18 = 0 \Leftrightarrow x = 3\] hoặc \[x = 6\].
Thể tích của bình cổ là
\(V = \pi \int\limits_3^6 {\left[ {{{\left( { - {x^2} + 8x - 12} \right)}^2}} \right]{\rm{d}}x + \pi \int\limits_1^3 {{{\left( { - x + 6} \right)}^2}{\rm{d}}x - \pi \int\limits_1^2 {{{\left( {{x^2} - 8x + 12} \right)}^2}{\rm{d}}x} } } \)\( = \frac{{153}}{5}\pi + \frac{{98}}{3}\pi - \frac{{113}}{{15}}\pi = \frac{{836}}{{15}}\pi \).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[{4^{{x^2} - 3x + 2}} + {4^{2{x^2} + 6x + 5}} = {4^{3{x^2} + 3x + 7}} + 1\]
\[ \Leftrightarrow {4^{{x^2} - 3x + 2}} + {4^{2{x^2} + 6x + 5}} = {4^{{x^2} - 3x + 2}} \cdot {4^{2{x^2} + 6x + 5}} + 1\]
\[ \Leftrightarrow {4^{{x^2} - 3x + 2}} - 1 + {4^{2{x^2} + 6x + 5}} - {4^{{x^2} - 3x + 2}} \cdot {4^{2{x^2} + 6x + 5}} = 0\]
\( \Leftrightarrow \left( {{4^{{x^2} - 3x + 2}} - 1} \right)\left( {1 - {4^{2{x^2} + 6x + 5}}} \right) = 0\).
Trường hợp 1: \({4^{{x^2} - 3x + 2}} = 1 \Leftrightarrow {x^2} - 3x + 2 = 0 \Leftrightarrow x = 1\) hoặc \(x = 2\).
Trường hợp 2: \({4^{2{x^2} + 6x + 5}} = 1 \Leftrightarrow 2{x^2} + 6x + 5 = 0\), phương trình này vô nghiệm.
Vậy, phương trình cho có \(2\) nghiệm \(x = 1,\) \(x = 2\).
Câu 2
Lời giải
Ta có \(f'\left( x \right) = \left( {x - 2} \right)\left( {x + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 1\end{array} \right..\)
Bảng xét dấu của \(f'\left( x \right)\) như sau:

Vậy hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right),\left( {2; + \infty } \right)\) và nghịch biến trên khoảng \[\left( { - 1;2} \right)\].
Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.