Câu hỏi:

23/01/2026 46 Lưu

Trong không gian với hệ tọa độ \(Oxyz,\) cho đường thẳng \(\Delta :\frac{{x - 2}}{5} = \frac{{y - 1}}{{12}} = \frac{{z - 6}}{{ - 13}}\) và mặt phẳng \(\left( P \right):x - 2y - 2z - 2026 = 0\).

a) Vectơ có tọa độ \(\left( {2;1;6} \right)\) là một vectơ chỉ phương của \(\Delta .\)
Đúng
Sai
b) Vectơ có tọa độ \(\left( {1; - 2; - 2} \right)\) là một vectơ pháp tuyến của \(\left( P \right).\)
Đúng
Sai
c) Côsin của góc giữa hai vectơ \(\overrightarrow u = \left( {5;12; - 13} \right)\)\(\overrightarrow n = \left( {1; - 2; - 2} \right)\) bằng \(\frac{7}{{39\sqrt 2 }}\).
Đúng
Sai
d) Góc giữa đường thẳng \(\Delta \) và mặt phẳng \(\left( P \right)\) (làm tròn đến hàng đơn vị của độ) bằng \(83^\circ \).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai. Một vectơ chỉ phương của đường thẳng \(\Delta \)\(\overrightarrow u = \left( {5;12; - 13} \right)\).

b) Đúng. Một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\)\(\overrightarrow n = \left( {1; - 2; - 2} \right)\).

c) Đúng. Côsin của góc giữa hai vectơ \(\overrightarrow u = \left( {5;12; - 13} \right)\)\(\overrightarrow n = \left( {1; - 2; - 2} \right)\)

\(\cos \left( {\overrightarrow u ,\overrightarrow n } \right) = \frac{{\overrightarrow u \cdot \overrightarrow n }}{{\left| {\overrightarrow u } \right| \cdot \left| {\overrightarrow n } \right|}} = \frac{7}{{13\sqrt 2 \cdot 3}} = \frac{7}{{39\sqrt 2 }}\).

d) Sai. Khi đó, góc giữa đường thẳng \(\Delta \) và mặt phẳng \(\left( P \right)\)

\(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{7}{{39\sqrt 2 }} \Rightarrow \left( {\Delta ,\left( P \right)} \right) \approx 7^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[{4^{{x^2} - 3x + 2}} + {4^{2{x^2} + 6x + 5}} = {4^{3{x^2} + 3x + 7}} + 1\]

\[ \Leftrightarrow {4^{{x^2} - 3x + 2}} + {4^{2{x^2} + 6x + 5}} = {4^{{x^2} - 3x + 2}} \cdot {4^{2{x^2} + 6x + 5}} + 1\]

\[ \Leftrightarrow {4^{{x^2} - 3x + 2}} - 1 + {4^{2{x^2} + 6x + 5}} - {4^{{x^2} - 3x + 2}} \cdot {4^{2{x^2} + 6x + 5}} = 0\]

\( \Leftrightarrow \left( {{4^{{x^2} - 3x + 2}} - 1} \right)\left( {1 - {4^{2{x^2} + 6x + 5}}} \right) = 0\).

Trường hợp 1: \({4^{{x^2} - 3x + 2}} = 1 \Leftrightarrow {x^2} - 3x + 2 = 0 \Leftrightarrow x = 1\) hoặc \(x = 2\).

Trường hợp 2: \({4^{2{x^2} + 6x + 5}} = 1 \Leftrightarrow 2{x^2} + 6x + 5 = 0\), phương trình này vô nghiệm.

Vậy, phương trình cho có \(2\) nghiệm \(x = 1,\) \(x = 2\).

Câu 2

A. Hàm số đã cho đồng biến trên \(\left( { - 1; + \infty } \right)\).                  
B. Hàm số đã cho đồng biến trên \(\left( { - \infty ;2} \right)\).    
C. Hàm số đã cho nghịch biến trên \(\left( { - 2;1} \right)\).                     
D. Hàm số đã cho nghịch biến trên \[\left( { - 1;2} \right)\].

Lời giải

Ta có \(f'\left( x \right) = \left( {x - 2} \right)\left( {x + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 1\end{array} \right..\)

Bảng xét dấu của \(f'\left( x \right)\) như sau:

Cho hàm số \(y = f\left( x \right)\) có đạo (ảnh 1)

Vậy hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right),\left( {2; + \infty } \right)\) và nghịch biến trên khoảng \[\left( { - 1;2} \right)\].

Chọn D.

Câu 5

A. \(20\).                 
B. \(10\).                 
C. \(\frac{5}{2}\).           
D. \(\frac{5}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{108}}{{775}}\).                    
B. \(\frac{{108}}{{665}}\).                             
C. \(\frac{{116}}{{565}}\).                             
D. \(\frac{{109}}{{785}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP