Câu hỏi:

23/01/2026 241 Lưu

Một người săn thỏ trong rừng, khả năng anh ta bắn trúng thỏ trong mỗi lần bắt tỷ lệ nghịch với khoảng cách bắn. Anh ta bắn lần đầu ở khoảng cách \(20\,{\rm{m}}\) với xác suất trúng thỏ là \(0,5\); nếu bị trượt anh ta bắn viên thứ \(2\) ở khoảng cách \(30\,{\rm{m}}\), nếu lại trượt anh ta bắn viên thứ \(3\) ở khoảng cách \(50\,{\rm{m}}.\) Tính xác suất để người thợ săn bắn trúng thỏ sau nhiều nhất ba lần bắt.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

11/15

Gọi \({A_k}\) là biến cố: “Người thợ săn bắn trúng thỏ ở lần thứ \(k\)”; \(k = 1,2,3.\)

Theo đầu bài ta có: \(P\left( {{A_1}} \right) = 0,5\); \(P\left( {{A_2}|\overline {{A_1}} } \right) = \frac{{20 \times 0,5}}{{30}} = \frac{1}{3}\); \(P\left( {{A_3}|\overline {{A_1}} \,\overline {{A_2}} } \right) = \frac{{20 \times 0,5}}{{50}} = \frac{1}{5}.\)

Gọi \(A\) là biến cố: “Người thợ săn bắn trúng thỏ”. Khi đó: \(A = {A_1} \cup \overline {{A_1}} {A_2} \cup \overline {{A_1}} \,\overline {{A_2}} {A_3}.\)

Vì \(3\) biến cố \({A_1}\), \(\overline {{A_1}} {A_2}\), \(\overline {{A_1}} \,\overline {{A_2}} {A_3}\) xung khắc từng đôi nên: \(P\left( A \right) = P\left( {{A_1}} \right) + P\left( {\overline {{A_1}} {A_2}} \right) + P\left( {\overline {{A_1}} \overline {{A_2}} {A_3}} \right).\)

Theo công thức nhân xác suất \(P\left( {\overline {{A_1}} {A_2}} \right) = P\left( {\overline {{A_1}} } \right) \cdot P\left( {{A_2}|\overline {{A_1}} } \right) = \left[ {1 - P\left( {{A_1}} \right)} \right] \cdot P\left( {{A_2}|\overline {{A_1}} } \right)\)\( = \left( {1 - 0,5} \right) \times \frac{1}{3} = \frac{1}{6}.\)

Tương tự \(P\left( {\overline {{A_1}} \,\overline {{A_2}} {A_3}} \right) = P\left( {\overline {{A_1}} } \right) \cdot P\left( {\overline {{A_2}} |\overline {{A_1}} } \right) \cdot P\left( {{A_3}|\overline {{A_1}} \,\overline {{A_2}} } \right)\)

\( = \left[ {1 - P\left( {{A_1}} \right)} \right] \cdot P\left[ {1 - P\left( {{A_2}|\overline {{A_1}} } \right)} \right] \cdot P\left( {{A_3}|\overline {{A_1}} \,\overline {{A_2}} } \right) = \left( {1 - 0,5} \right)\left( {1 - \frac{1}{3}} \right) \times \frac{1}{5} = \frac{1}{{15}}.\)

Do đó: \(P\left( A \right) = 0,5 + \frac{1}{6} + \frac{1}{{15}} = \frac{{11}}{{15}}.\)

Trả lời: \(\frac{{11}}{{15}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Tập xác định của hàm số đã cho là \(D = \left( {1\,;\, + \infty } \right)\).
Đúng
Sai
b) Hàm số đã cho có đúng hai điểm cực trị.
Đúng
Sai
c) Đồ thị \(\left( C \right)\) có tiệm cận xiên là \(y = 2x + 1\).
Đúng
Sai
d) Xét điểm \(A\) thuộc \(\left( C \right)\), tổng khoảng cách từ \(A\) đến hai đường tiệm cận của \(\left( C \right)\) luôn lớn hơn \(2,3\).
Đúng
Sai

Lời giải

a) Sai. Tập xác định của hàm số đã cho là \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

b) Đúng. Ta có \(y' = \frac{{\left( {4x - 1} \right)\left( {x - 1} \right) - \left( {2{x^2} - x + 2} \right)}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{2{x^2} - 4x - 1}}{{{{\left( {x - 1} \right)}^2}}}\); \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{2 + \sqrt 6 }}{2}\\x = \frac{{2 - \sqrt 6 }}{2}\end{array} \right.\).

Ta có bảng xét dấu:

Phần II (2 điểm). Thí sinh trả lời câu 1, câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai. (ảnh 1)

Từ bảng xét dấu ta thấy hàm số đã cho có đúng hai điểm cực trị.

c) Đúng. Ta có \(y = \frac{{2{x^2} - x + 2}}{{x - 1}} = 2x + 1 + \frac{3}{{x - 1}}\) nên đồ thị \(\left( C \right)\) có tiệm cận xiên là đường thẳng \(y = 2x + 1\).

d) Đúng. Tiệm cận đứng của đồ thị \(\left( C \right)\) là đường thẳng \(x = 1\).

Xét điểm \(A\left( {a\,;\,\frac{{2{a^2} - a + 2}}{{a - 1}}} \right)\,\) thuộc đồ thị \(\left( C \right)\).

Tổng khoảng cách từ \(A\) đến hai đường tiệm cận của \(\left( C \right)\)

\(d = \left| {a - 1} \right| + \frac{{\left| {2a - \frac{{2{a^2} - a + 2}}{{a - 1}} + 1} \right|}}{{\sqrt 5 }} = \left| {a - 1} \right| + \frac{3}{{\sqrt 5 \left| {a - 1} \right|}} \ge 2\sqrt {\left| {a - 1} \right|.\frac{3}{{\sqrt 5 \left| {a - 1} \right|}}} = 2\sqrt {\frac{3}{{\sqrt 5 }}} > 2,3\).

Câu 2

a) Tại \(D,\) máy bay cách ra đa \(29000\) m (làm tròn đến hàng nghìn theo đơn vị mét).
Đúng
Sai
b) Gọi \(I\) là trung điểm của đoạn thẳng \(DE.\) Khi máy bay bay đến điểm \(I,\) máy bay cách mặt đất \(10500\)m.
Đúng
Sai
c) Trên đoạn đường bay từ \(D\) đến \(E,\) máy bay sẽ đi qua điểm \(P\left( {16;3,2;9,6} \right)\).
Đúng
Sai
d) Khoảng cách giữa vị trí đầu tiên và vị trí cuối cùng mà máy bay bay trong phạm vi theo dõi của ra đa (làm tròn đến hàng trăm theo đơn vị mét) là \(22000\)m.
Đúng
Sai

Lời giải

a) Sai. Ta có \(\overrightarrow {OD} = \left( {20\,;0\,;9} \right)\)\(OD = \sqrt {{{20}^2} + {9^2}} = \sqrt {481} \)km \( \approx 22000\) m.

b) Đúng. Tọa độ trung điểm \(I\) của \(DE\)\(\left( {10;8;\frac{{21}}{2}} \right).\)

Khi máy bay bay đến điểm \(I,\) máy bay cách mặt đất \(\frac{{21}}{2}\)km hay \(10500\)m.

c) Đúng. Ta có \(\overrightarrow {DE} = \left( { - 20;16;3} \right)\).

Đường thẳng \(DE\) đi qua điểm \(D\left( {20;0;9} \right)\) và có vectơ chỉ phương \(\vec u = \overrightarrow {DE} = \left( { - 20\,;16\,;3} \right)\) nên có phương trình tham số là \(\left\{ \begin{array}{l}x = 20 - 20t\\y = 16t\\z = 9 + 3t\end{array} \right.,(t \in \mathbb{R}).\)

Thay tọa độ điểm \(P\left( {16;3,2;9,6} \right)\) vào phương trình tham số của đường thẳng \(DE\) ta được

\(\left\{ \begin{array}{l}16 = 20 - 20t\\3,2 = 16t\\9,6 = 9 + 3t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 0,2\\t = 0,2\\t = 0,2\end{array} \right.\). Như vậy \(P \in DE.\)

Do đó trên đoạn đường bay từ \(D\) đến \(E,\) máy bay sẽ đi qua điểm \(P\left( {16;3,2;9,6} \right)\).

d) Sai. Gọi \(H\left( {20 - 20t;16t;9 + 3t} \right) \in DE\) là hình chiếu của \(O\) trên \(DE.\)

Hai vectơ \(\left\{ \begin{array}{l}\overrightarrow {OH} = \left( {20 - 20t;16t;9 + 3t} \right)\\\overrightarrow {DE} = \left( { - 20;16;3} \right)\end{array} \right.\) vuông góc với nhau nên

\(\overrightarrow {OH} \cdot \overrightarrow {DE} = 0 \Leftrightarrow - 20\left( {20 - 20t} \right) + 16 \cdot 16t + 3\left( {9 + 3t} \right) = 0 \Leftrightarrow t = \frac{{373}}{{665}}.\)

Khi đó \(\overrightarrow {OH} = \left( {\frac{{1168}}{{133}};\frac{{5968}}{{665}};\frac{{7104}}{{665}}} \right)\)\(OH = \sqrt {{{\left( {\frac{{1168}}{{133}}} \right)}^2} + {{\left( {\frac{{5968}}{{665}}} \right)}^2} + {{\left( {\frac{{7104}}{{665}}} \right)}^2}} = \sqrt {\frac{{180736}}{{665}}} = \frac{{16\sqrt {469490} }}{{665}}.\)

Khoảng cách giữa vị trí đầu tiên và vị trí cuối cùng mà máy bay bay trong phạm vi theo dõi của ra đa là:

\(2\sqrt {{{20}^2} - O{H^2}} = 2\sqrt {{{20}^2} - \frac{{180736}}{{665}}} = \frac{{584\sqrt {665} }}{{665}} \approx 22600\) m.

Câu 4

A. \({\vec u_1} = \left( {3; - 1;3} \right)\).                     
B. \({\vec u_2} = \left( {3; - 1;0} \right)\).                     
C. \({\vec u_3} = \left( { - 1; - 1;3} \right)\).            
D. \({\vec u_4} = \left( { - 1;0;3} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP