(1 điểm). Một thùng rượu vang có dạng khối tròn xoay với bán kính mặt đáy và mặt ở trên là 33 cm, bán kính mặt cắt ở chính giữa thùng là 43 cm. Chiều cao của thùng rượu là 112 cm, bao gồm phần thân thùng rượu, hai đế đỡ thùng rượu (mỗi đế cao 3 cm) và thùng rượu được ghép từ các thanh gỗ sồi với độ dày mỗi thanh gỗ là 3 cm. Phần bên trong thùng rượu có dạng một khối tròn xoay tạo thành khi quay một phần của parabol \[\left( P \right):y = a{x^2} + bx + c\] quanh trục hoành.

Thùng rượu vang đó chứa được tối đa bao nhiêu lít rượu?
(1 điểm). Một thùng rượu vang có dạng khối tròn xoay với bán kính mặt đáy và mặt ở trên là 33 cm, bán kính mặt cắt ở chính giữa thùng là 43 cm. Chiều cao của thùng rượu là 112 cm, bao gồm phần thân thùng rượu, hai đế đỡ thùng rượu (mỗi đế cao 3 cm) và thùng rượu được ghép từ các thanh gỗ sồi với độ dày mỗi thanh gỗ là 3 cm. Phần bên trong thùng rượu có dạng một khối tròn xoay tạo thành khi quay một phần của parabol \[\left( P \right):y = a{x^2} + bx + c\] quanh trục hoành.

Thùng rượu vang đó chứa được tối đa bao nhiêu lít rượu?
Câu hỏi trong đề: Đề ôn thi ĐGNL ĐHSP Hà Nội môn Toán có đáp án !!
Quảng cáo
Trả lời:

Gọi \(\left( P \right):y = a{x^2} + bx + c\) là parabol đi qua điểm \(A\left( {0,5;\,\,0,3} \right)\) và có đỉnh \(S\left( {0;\,\,0,4} \right)\) (hình vẽ). Khi đó, dung tích thùng rượu bằng thể tích khối tròn xoay khi cho hình phẳng giới hạn bởi \(\left( P \right)\), trục hoành và hai đường thẳng \(x = 0,5;\,\,x = - 0,5\) quay quanh trục \[Ox\].
Tìm \(\left( P \right)\):
\(\left( P \right)\) có đỉnh \(S\left( {0;\,\,0,4} \right)\) nên ta có: \(\left\{ \begin{array}{l}c = 0,4\\ - \frac{b}{{2a}} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c = 0,4\\b = 0\end{array} \right.\). Suy ra \(\left( P \right):y = a{x^2} + 0,4\).
Mà \(\left( P \right)\) qua \(A\left( {0,5;\,\,0,3} \right)\) nên ta có: \(a \cdot 0,{5^2} + 0,4 = 0,3 \Rightarrow a = - 0,4\).
Tìm được \(\left( P \right):y = - 0,4{x^2} + 0,4\).
Suy ra \[V = \pi \int\limits_{ - 0,5}^{0,5} {{{\left( { - 0,4{x^2} + 0,4} \right)}^2}{\rm{d}}x} = \frac{{203\pi }}{{1500}}\,\,{{\rm{m}}^3} = \frac{{406\pi }}{3}\,\,{\rm{d}}{{\rm{m}}^{\rm{3}}} = \frac{{406\pi }}{3}\] lít.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Sai. Ta có \(\overrightarrow {OD} = \left( {20\,;0\,;9} \right)\) và \(OD = \sqrt {{{20}^2} + {9^2}} = \sqrt {481} \)km \( \approx 22000\) m.
b) Đúng. Tọa độ trung điểm \(I\) của \(DE\) là \(\left( {10;8;\frac{{21}}{2}} \right).\)
Khi máy bay bay đến điểm \(I,\) máy bay cách mặt đất \(\frac{{21}}{2}\)km hay \(10500\)m.
c) Đúng. Ta có \(\overrightarrow {DE} = \left( { - 20;16;3} \right)\).
Đường thẳng \(DE\) đi qua điểm \(D\left( {20;0;9} \right)\) và có vectơ chỉ phương \(\vec u = \overrightarrow {DE} = \left( { - 20\,;16\,;3} \right)\) nên có phương trình tham số là \(\left\{ \begin{array}{l}x = 20 - 20t\\y = 16t\\z = 9 + 3t\end{array} \right.,(t \in \mathbb{R}).\)
Thay tọa độ điểm \(P\left( {16;3,2;9,6} \right)\) vào phương trình tham số của đường thẳng \(DE\) ta được
\(\left\{ \begin{array}{l}16 = 20 - 20t\\3,2 = 16t\\9,6 = 9 + 3t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 0,2\\t = 0,2\\t = 0,2\end{array} \right.\). Như vậy \(P \in DE.\)
Do đó trên đoạn đường bay từ \(D\) đến \(E,\) máy bay sẽ đi qua điểm \(P\left( {16;3,2;9,6} \right)\).
d) Sai. Gọi \(H\left( {20 - 20t;16t;9 + 3t} \right) \in DE\) là hình chiếu của \(O\) trên \(DE.\)
Hai vectơ \(\left\{ \begin{array}{l}\overrightarrow {OH} = \left( {20 - 20t;16t;9 + 3t} \right)\\\overrightarrow {DE} = \left( { - 20;16;3} \right)\end{array} \right.\) vuông góc với nhau nên
\(\overrightarrow {OH} \cdot \overrightarrow {DE} = 0 \Leftrightarrow - 20\left( {20 - 20t} \right) + 16 \cdot 16t + 3\left( {9 + 3t} \right) = 0 \Leftrightarrow t = \frac{{373}}{{665}}.\)
Khi đó \(\overrightarrow {OH} = \left( {\frac{{1168}}{{133}};\frac{{5968}}{{665}};\frac{{7104}}{{665}}} \right)\) và \(OH = \sqrt {{{\left( {\frac{{1168}}{{133}}} \right)}^2} + {{\left( {\frac{{5968}}{{665}}} \right)}^2} + {{\left( {\frac{{7104}}{{665}}} \right)}^2}} = \sqrt {\frac{{180736}}{{665}}} = \frac{{16\sqrt {469490} }}{{665}}.\)
Khoảng cách giữa vị trí đầu tiên và vị trí cuối cùng mà máy bay bay trong phạm vi theo dõi của ra đa là:
\(2\sqrt {{{20}^2} - O{H^2}} = 2\sqrt {{{20}^2} - \frac{{180736}}{{665}}} = \frac{{584\sqrt {665} }}{{665}} \approx 22600\) m.
Lời giải
Gọi \({A_k}\) là biến cố: “Người thợ săn bắn trúng thỏ ở lần thứ \(k\)”; \(k = 1,2,3.\)
Theo đầu bài ta có: \(P\left( {{A_1}} \right) = 0,5\); \(P\left( {{A_2}|\overline {{A_1}} } \right) = \frac{{20 \times 0,5}}{{30}} = \frac{1}{3}\); \(P\left( {{A_3}|\overline {{A_1}} \,\overline {{A_2}} } \right) = \frac{{20 \times 0,5}}{{50}} = \frac{1}{5}.\)
Gọi \(A\) là biến cố: “Người thợ săn bắn trúng thỏ”. Khi đó: \(A = {A_1} \cup \overline {{A_1}} {A_2} \cup \overline {{A_1}} \,\overline {{A_2}} {A_3}.\)
Vì \(3\) biến cố \({A_1}\), \(\overline {{A_1}} {A_2}\), \(\overline {{A_1}} \,\overline {{A_2}} {A_3}\) xung khắc từng đôi nên: \(P\left( A \right) = P\left( {{A_1}} \right) + P\left( {\overline {{A_1}} {A_2}} \right) + P\left( {\overline {{A_1}} \overline {{A_2}} {A_3}} \right).\)
Theo công thức nhân xác suất \(P\left( {\overline {{A_1}} {A_2}} \right) = P\left( {\overline {{A_1}} } \right) \cdot P\left( {{A_2}|\overline {{A_1}} } \right) = \left[ {1 - P\left( {{A_1}} \right)} \right] \cdot P\left( {{A_2}|\overline {{A_1}} } \right)\)\( = \left( {1 - 0,5} \right) \times \frac{1}{3} = \frac{1}{6}.\)
Tương tự \(P\left( {\overline {{A_1}} \,\overline {{A_2}} {A_3}} \right) = P\left( {\overline {{A_1}} } \right) \cdot P\left( {\overline {{A_2}} |\overline {{A_1}} } \right) \cdot P\left( {{A_3}|\overline {{A_1}} \,\overline {{A_2}} } \right)\)
\( = \left[ {1 - P\left( {{A_1}} \right)} \right] \cdot P\left[ {1 - P\left( {{A_2}|\overline {{A_1}} } \right)} \right] \cdot P\left( {{A_3}|\overline {{A_1}} \,\overline {{A_2}} } \right) = \left( {1 - 0,5} \right)\left( {1 - \frac{1}{3}} \right) \times \frac{1}{5} = \frac{1}{{15}}.\)
Do đó: \(P\left( A \right) = 0,5 + \frac{1}{6} + \frac{1}{{15}} = \frac{{11}}{{15}}.\)
Trả lời: \(\frac{{11}}{{15}}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
